### Abstract

Original language | English |
---|---|

Pages (from-to) | 225-230 |

Number of pages | 6 |

Journal | Mathematica Aeterna |

Volume | 5 |

Issue number | 1 |

Publication status | Published - 2015 |

### Fingerprint

### Cite this

*Mathematica Aeterna*,

*5*(1), 225-230.

}

*Mathematica Aeterna*, vol. 5, no. 1, pp. 225-230.

**A derivation of two transformation formulas contiguous to that of Kummer’s second theorem via a differential equation approach.** / Kodavanji, S.; Rathie, A. K.; Paris, R. B.

Research output: Contribution to journal › Article

TY - JOUR

T1 - A derivation of two transformation formulas contiguous to that of Kummer’s second theorem via a differential equation approach

AU - Kodavanji, S.

AU - Rathie, A. K.

AU - Paris, R. B.

PY - 2015

Y1 - 2015

N2 - The purpose of this note is to provide an alternative proof of two transformation formulas contiguous to that of Kummer’s second transformation for the confluent hypergeometric function 1F1 using a differential equation approach.

AB - The purpose of this note is to provide an alternative proof of two transformation formulas contiguous to that of Kummer’s second transformation for the confluent hypergeometric function 1F1 using a differential equation approach.

M3 - Article

VL - 5

SP - 225

EP - 230

JO - Mathematica Aeterna

JF - Mathematica Aeterna

SN - 1314-3344

IS - 1

ER -