A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the Wrinkly Spreader

Research output: Contribution to journalArticle

52 Downloads (Pure)

Abstract

Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm—forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.
Original languageEnglish
Article number675432
Number of pages10
JournalInternational Journal of Evolutionary Biology
Volume2014
DOIs
Publication statusPublished - 16 Jan 2014

Fingerprint

spreaders
cellulose
niches
mutation
biofilm
liquids
adaptive radiation
bacteria
Pseudomonas fluorescens
soil aggregates
molecular biology
oxygen
ecology
air
mutants
synthesis

Cite this

@article{9c367339a07d45bf828d386ed1518140,
title = "A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the Wrinkly Spreader",
abstract = "Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm—forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.",
author = "Spiers, {Andrew J.}",
year = "2014",
month = "1",
day = "16",
doi = "10.1155/2014/675432",
language = "English",
volume = "2014",
journal = "International Journal of Evolutionary Biology",
issn = "2090-8032",

}

TY - JOUR

T1 - A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the Wrinkly Spreader

AU - Spiers, Andrew J.

PY - 2014/1/16

Y1 - 2014/1/16

N2 - Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm—forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.

AB - Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm—forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.

U2 - 10.1155/2014/675432

DO - 10.1155/2014/675432

M3 - Article

VL - 2014

JO - International Journal of Evolutionary Biology

JF - International Journal of Evolutionary Biology

SN - 2090-8032

M1 - 675432

ER -