Active recovery induces greater endurance adaptations when performing sprint interval training

John A. Babraj, Takaki Yamagishi

Research output: Contribution to journalArticle

Abstract

This study sought to determine effects of recovery intensity on endurance adaptations during sprint interval training (SIT). Fourteen healthy young adults (male: 9 and female: 5) were allocated to 1 of 2 training groups: active recovery group (ARG, male: 4 and female: 3) or passive recovery group (PRG, male: 5 and female: 2). After having completed a 2-week control period, both groups performed 6 sessions of 4- to 6 30-second sprints interspersed with 4-minute recovery over 2 weeks. However, only ARG cycled at 40% V[Combining Dot Above]O2peak during the 4-minute recovery periods, while PRG rested on the bike or cycled unloaded. After the 2-week training intervention, both groups improved 10-km time-trial performance to a similar extent (ARG: 8.6%, d = 1.60, p = 0.006; PRG: 6.7%, d = 0.96, p = 0.048) without gains in V[Combining Dot Above]O2peak. However, critical power was increased by ARG only (7.9%, d = 1.75, p = 0.015) with a tendency of increased maximal incremental power output (5.3%, d = 0.88, p = 0.063). During the training, active recovery maintained V[Combining Dot Above]O2 and heart rate at a higher level compared with passive recovery (V[Combining Dot Above]O2: p = 0.005, HR: p = 0.018), suggesting greater cardiorespiratory demands with the active recovery. This study demonstrated that greater endurance performance adaptations are induced with active recovery when performing SIT over a short time frame. The findings of the current study indicate that, with active recovery, individuals can gain greater training benefits without increasing total training commitment time. Further studies are required to determine whether differences are seen with recovery intensity over a longer period.
LanguageEnglish
Number of pages9
JournalJournal of Strength & Conditioning Research
Early online date10 Aug 2018
DOIs
Publication statusE-pub ahead of print - 10 Aug 2018

Fingerprint

Young Adult
Heart Rate
High-Intensity Interval Training

Cite this

@article{1456a330b4aa4c44aa20d11ddfe3ec35,
title = "Active recovery induces greater endurance adaptations when performing sprint interval training",
abstract = "This study sought to determine effects of recovery intensity on endurance adaptations during sprint interval training (SIT). Fourteen healthy young adults (male: 9 and female: 5) were allocated to 1 of 2 training groups: active recovery group (ARG, male: 4 and female: 3) or passive recovery group (PRG, male: 5 and female: 2). After having completed a 2-week control period, both groups performed 6 sessions of 4- to 6 30-second sprints interspersed with 4-minute recovery over 2 weeks. However, only ARG cycled at 40{\%} V[Combining Dot Above]O2peak during the 4-minute recovery periods, while PRG rested on the bike or cycled unloaded. After the 2-week training intervention, both groups improved 10-km time-trial performance to a similar extent (ARG: 8.6{\%}, d = 1.60, p = 0.006; PRG: 6.7{\%}, d = 0.96, p = 0.048) without gains in V[Combining Dot Above]O2peak. However, critical power was increased by ARG only (7.9{\%}, d = 1.75, p = 0.015) with a tendency of increased maximal incremental power output (5.3{\%}, d = 0.88, p = 0.063). During the training, active recovery maintained V[Combining Dot Above]O2 and heart rate at a higher level compared with passive recovery (V[Combining Dot Above]O2: p = 0.005, HR: p = 0.018), suggesting greater cardiorespiratory demands with the active recovery. This study demonstrated that greater endurance performance adaptations are induced with active recovery when performing SIT over a short time frame. The findings of the current study indicate that, with active recovery, individuals can gain greater training benefits without increasing total training commitment time. Further studies are required to determine whether differences are seen with recovery intensity over a longer period.",
author = "Babraj, {John A.} and Takaki Yamagishi",
year = "2018",
month = "8",
day = "10",
doi = "10.1519/JSC.0000000000002787",
language = "English",
journal = "Journal of Strength & Conditioning Research",
issn = "1064-8011",

}

TY - JOUR

T1 - Active recovery induces greater endurance adaptations when performing sprint interval training

AU - Babraj, John A.

AU - Yamagishi, Takaki

PY - 2018/8/10

Y1 - 2018/8/10

N2 - This study sought to determine effects of recovery intensity on endurance adaptations during sprint interval training (SIT). Fourteen healthy young adults (male: 9 and female: 5) were allocated to 1 of 2 training groups: active recovery group (ARG, male: 4 and female: 3) or passive recovery group (PRG, male: 5 and female: 2). After having completed a 2-week control period, both groups performed 6 sessions of 4- to 6 30-second sprints interspersed with 4-minute recovery over 2 weeks. However, only ARG cycled at 40% V[Combining Dot Above]O2peak during the 4-minute recovery periods, while PRG rested on the bike or cycled unloaded. After the 2-week training intervention, both groups improved 10-km time-trial performance to a similar extent (ARG: 8.6%, d = 1.60, p = 0.006; PRG: 6.7%, d = 0.96, p = 0.048) without gains in V[Combining Dot Above]O2peak. However, critical power was increased by ARG only (7.9%, d = 1.75, p = 0.015) with a tendency of increased maximal incremental power output (5.3%, d = 0.88, p = 0.063). During the training, active recovery maintained V[Combining Dot Above]O2 and heart rate at a higher level compared with passive recovery (V[Combining Dot Above]O2: p = 0.005, HR: p = 0.018), suggesting greater cardiorespiratory demands with the active recovery. This study demonstrated that greater endurance performance adaptations are induced with active recovery when performing SIT over a short time frame. The findings of the current study indicate that, with active recovery, individuals can gain greater training benefits without increasing total training commitment time. Further studies are required to determine whether differences are seen with recovery intensity over a longer period.

AB - This study sought to determine effects of recovery intensity on endurance adaptations during sprint interval training (SIT). Fourteen healthy young adults (male: 9 and female: 5) were allocated to 1 of 2 training groups: active recovery group (ARG, male: 4 and female: 3) or passive recovery group (PRG, male: 5 and female: 2). After having completed a 2-week control period, both groups performed 6 sessions of 4- to 6 30-second sprints interspersed with 4-minute recovery over 2 weeks. However, only ARG cycled at 40% V[Combining Dot Above]O2peak during the 4-minute recovery periods, while PRG rested on the bike or cycled unloaded. After the 2-week training intervention, both groups improved 10-km time-trial performance to a similar extent (ARG: 8.6%, d = 1.60, p = 0.006; PRG: 6.7%, d = 0.96, p = 0.048) without gains in V[Combining Dot Above]O2peak. However, critical power was increased by ARG only (7.9%, d = 1.75, p = 0.015) with a tendency of increased maximal incremental power output (5.3%, d = 0.88, p = 0.063). During the training, active recovery maintained V[Combining Dot Above]O2 and heart rate at a higher level compared with passive recovery (V[Combining Dot Above]O2: p = 0.005, HR: p = 0.018), suggesting greater cardiorespiratory demands with the active recovery. This study demonstrated that greater endurance performance adaptations are induced with active recovery when performing SIT over a short time frame. The findings of the current study indicate that, with active recovery, individuals can gain greater training benefits without increasing total training commitment time. Further studies are required to determine whether differences are seen with recovery intensity over a longer period.

U2 - 10.1519/JSC.0000000000002787

DO - 10.1519/JSC.0000000000002787

M3 - Article

JO - Journal of Strength & Conditioning Research

T2 - Journal of Strength & Conditioning Research

JF - Journal of Strength & Conditioning Research

SN - 1064-8011

ER -