Anaerobic digestion of food waste: eliciting sustainable water-energy-food nexus practices with agent based modelling and visual analytics

Ruth E. Falconer, Ismail Haltas, Liz Varga, Paula J Forbes, Mohamed Abdel-Aal, Nikolay Panayotov

Research output: Contribution to journalArticle

Abstract

Food waste is a problem for which solutions are recognised but not readily put into practice. What should be the primary objective, reducing or eliminating surplus food production, requires great change within social, cultural and economic structures. The secondary approach of redistributing surplus food to areas of deficit (in terms of socioeconomic groups and/or geographic regions) involves a significant logistical burden, and suffers the same issues as with the elimination of waste. The least desirable, but perhaps most practicable approach, is the use of food waste as a feedstock for Anaerobic Digestion (AD). The strategic adoption of AD can therefore be seen as an important step towards mitigating food waste, but the implementation of efficient AD systems on a large (county/region) scale involves significant complexity. The optimal number, size and location of AD plants, and whether they are
centralised versus decentralised, may be determined by considering factors such as supply and proximity to feedstock, transport links, emission hazards and social impact. Reaching balanced and objective decisions when faced with such disparate criteria is inevitably very difficult. To address this problem we prototype and evaluate a decision support tool for county-scale AD planning. Our approach is a hybridised Agent Based Model (ABM) with a Multi Objective Optimisation. We capture the spatio-temporal dependencies that exist in the water, energy and food systems associated with energy derived from food waste using Agent Based Modelling (ABM). The use of Visual Analytics in the form of Interactive Multi Criteria analysis offers a means to communicate the co-benefits and trade-offs that may emerge, as well as prioritise the AD strategies. Specifically, the method supports exploration of the social, environmental and economic impact of different AD strategies and decisions, linked to current issues, namely AD scale and adoption. The interactive MCA allows users to explore and understand the WEF impact of different implementations and management policies, based on the weighting of criteria. The results highlight a trade-off between transport costs and social acceptability for the AD centralised versus decentralised strategies. When low carbon options are more important, then slow, steady and aggressive decentralised strategies are the closest to the ideal, with centralised aggressive being the furthest from the ideal - i.e. worst option. Conversely, when Energy production is considered with a greater weighting, then aggressive scaling up in a centralised approach is best with slow and steady approaches being further from the ideal. The framework has demonstrated that it permits a space for dialogue and transparent prioritization of AD strategies based on WEF nexus impacts.
Original languageEnglish
Article number120060
JournalJournal of Cleaner Production
Early online date11 Jan 2020
DOIs
Publication statusE-pub ahead of print - 11 Jan 2020

Fingerprint

Anaerobic digestion
food
modeling
energy
Water
water
social impact
Feedstocks
anaerobic digestion
Agent-based modeling
Energy
Food
Economics
economic structure
prioritization
social change
Multiobjective optimization
food production
economic impact
trade-off

Cite this

@article{3697529f67ac4189bec160cb2ab91f47,
title = "Anaerobic digestion of food waste: eliciting sustainable water-energy-food nexus practices with agent based modelling and visual analytics",
abstract = "Food waste is a problem for which solutions are recognised but not readily put into practice. What should be the primary objective, reducing or eliminating surplus food production, requires great change within social, cultural and economic structures. The secondary approach of redistributing surplus food to areas of deficit (in terms of socioeconomic groups and/or geographic regions) involves a significant logistical burden, and suffers the same issues as with the elimination of waste. The least desirable, but perhaps most practicable approach, is the use of food waste as a feedstock for Anaerobic Digestion (AD). The strategic adoption of AD can therefore be seen as an important step towards mitigating food waste, but the implementation of efficient AD systems on a large (county/region) scale involves significant complexity. The optimal number, size and location of AD plants, and whether they arecentralised versus decentralised, may be determined by considering factors such as supply and proximity to feedstock, transport links, emission hazards and social impact. Reaching balanced and objective decisions when faced with such disparate criteria is inevitably very difficult. To address this problem we prototype and evaluate a decision support tool for county-scale AD planning. Our approach is a hybridised Agent Based Model (ABM) with a Multi Objective Optimisation. We capture the spatio-temporal dependencies that exist in the water, energy and food systems associated with energy derived from food waste using Agent Based Modelling (ABM). The use of Visual Analytics in the form of Interactive Multi Criteria analysis offers a means to communicate the co-benefits and trade-offs that may emerge, as well as prioritise the AD strategies. Specifically, the method supports exploration of the social, environmental and economic impact of different AD strategies and decisions, linked to current issues, namely AD scale and adoption. The interactive MCA allows users to explore and understand the WEF impact of different implementations and management policies, based on the weighting of criteria. The results highlight a trade-off between transport costs and social acceptability for the AD centralised versus decentralised strategies. When low carbon options are more important, then slow, steady and aggressive decentralised strategies are the closest to the ideal, with centralised aggressive being the furthest from the ideal - i.e. worst option. Conversely, when Energy production is considered with a greater weighting, then aggressive scaling up in a centralised approach is best with slow and steady approaches being further from the ideal. The framework has demonstrated that it permits a space for dialogue and transparent prioritization of AD strategies based on WEF nexus impacts.",
author = "Falconer, {Ruth E.} and Ismail Haltas and Liz Varga and Forbes, {Paula J} and Mohamed Abdel-Aal and Nikolay Panayotov",
year = "2020",
month = "1",
day = "11",
doi = "10.1016/j.jclepro.2020.120060",
language = "English",
journal = "Journal of Cleaner Production",
issn = "0959-6526",
publisher = "Elsevier Limited",

}

Anaerobic digestion of food waste : eliciting sustainable water-energy-food nexus practices with agent based modelling and visual analytics. / Falconer, Ruth E.; Haltas, Ismail; Varga, Liz; Forbes, Paula J ; Abdel-Aal, Mohamed; Panayotov, Nikolay.

In: Journal of Cleaner Production, 11.01.2020.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Anaerobic digestion of food waste

T2 - eliciting sustainable water-energy-food nexus practices with agent based modelling and visual analytics

AU - Falconer, Ruth E.

AU - Haltas, Ismail

AU - Varga, Liz

AU - Forbes, Paula J

AU - Abdel-Aal, Mohamed

AU - Panayotov, Nikolay

PY - 2020/1/11

Y1 - 2020/1/11

N2 - Food waste is a problem for which solutions are recognised but not readily put into practice. What should be the primary objective, reducing or eliminating surplus food production, requires great change within social, cultural and economic structures. The secondary approach of redistributing surplus food to areas of deficit (in terms of socioeconomic groups and/or geographic regions) involves a significant logistical burden, and suffers the same issues as with the elimination of waste. The least desirable, but perhaps most practicable approach, is the use of food waste as a feedstock for Anaerobic Digestion (AD). The strategic adoption of AD can therefore be seen as an important step towards mitigating food waste, but the implementation of efficient AD systems on a large (county/region) scale involves significant complexity. The optimal number, size and location of AD plants, and whether they arecentralised versus decentralised, may be determined by considering factors such as supply and proximity to feedstock, transport links, emission hazards and social impact. Reaching balanced and objective decisions when faced with such disparate criteria is inevitably very difficult. To address this problem we prototype and evaluate a decision support tool for county-scale AD planning. Our approach is a hybridised Agent Based Model (ABM) with a Multi Objective Optimisation. We capture the spatio-temporal dependencies that exist in the water, energy and food systems associated with energy derived from food waste using Agent Based Modelling (ABM). The use of Visual Analytics in the form of Interactive Multi Criteria analysis offers a means to communicate the co-benefits and trade-offs that may emerge, as well as prioritise the AD strategies. Specifically, the method supports exploration of the social, environmental and economic impact of different AD strategies and decisions, linked to current issues, namely AD scale and adoption. The interactive MCA allows users to explore and understand the WEF impact of different implementations and management policies, based on the weighting of criteria. The results highlight a trade-off between transport costs and social acceptability for the AD centralised versus decentralised strategies. When low carbon options are more important, then slow, steady and aggressive decentralised strategies are the closest to the ideal, with centralised aggressive being the furthest from the ideal - i.e. worst option. Conversely, when Energy production is considered with a greater weighting, then aggressive scaling up in a centralised approach is best with slow and steady approaches being further from the ideal. The framework has demonstrated that it permits a space for dialogue and transparent prioritization of AD strategies based on WEF nexus impacts.

AB - Food waste is a problem for which solutions are recognised but not readily put into practice. What should be the primary objective, reducing or eliminating surplus food production, requires great change within social, cultural and economic structures. The secondary approach of redistributing surplus food to areas of deficit (in terms of socioeconomic groups and/or geographic regions) involves a significant logistical burden, and suffers the same issues as with the elimination of waste. The least desirable, but perhaps most practicable approach, is the use of food waste as a feedstock for Anaerobic Digestion (AD). The strategic adoption of AD can therefore be seen as an important step towards mitigating food waste, but the implementation of efficient AD systems on a large (county/region) scale involves significant complexity. The optimal number, size and location of AD plants, and whether they arecentralised versus decentralised, may be determined by considering factors such as supply and proximity to feedstock, transport links, emission hazards and social impact. Reaching balanced and objective decisions when faced with such disparate criteria is inevitably very difficult. To address this problem we prototype and evaluate a decision support tool for county-scale AD planning. Our approach is a hybridised Agent Based Model (ABM) with a Multi Objective Optimisation. We capture the spatio-temporal dependencies that exist in the water, energy and food systems associated with energy derived from food waste using Agent Based Modelling (ABM). The use of Visual Analytics in the form of Interactive Multi Criteria analysis offers a means to communicate the co-benefits and trade-offs that may emerge, as well as prioritise the AD strategies. Specifically, the method supports exploration of the social, environmental and economic impact of different AD strategies and decisions, linked to current issues, namely AD scale and adoption. The interactive MCA allows users to explore and understand the WEF impact of different implementations and management policies, based on the weighting of criteria. The results highlight a trade-off between transport costs and social acceptability for the AD centralised versus decentralised strategies. When low carbon options are more important, then slow, steady and aggressive decentralised strategies are the closest to the ideal, with centralised aggressive being the furthest from the ideal - i.e. worst option. Conversely, when Energy production is considered with a greater weighting, then aggressive scaling up in a centralised approach is best with slow and steady approaches being further from the ideal. The framework has demonstrated that it permits a space for dialogue and transparent prioritization of AD strategies based on WEF nexus impacts.

U2 - 10.1016/j.jclepro.2020.120060

DO - 10.1016/j.jclepro.2020.120060

M3 - Article

JO - Journal of Cleaner Production

JF - Journal of Cleaner Production

SN - 0959-6526

M1 - 120060

ER -