Abstract
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with α-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in αM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.
| Original language | English |
|---|---|
| Pages (from-to) | 1031-1042 |
| Number of pages | 12 |
| Journal | Molecular Microbiology |
| Volume | 32 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 12 Jun 1999 |
| Externally published | Yes |