Can magnetic breakout be achieved from multiple flux emergence?

David MacTaggart, Alan W. Hood

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
62 Downloads (Pure)


Aims. We study the breakout model using multiple flux emergence to produce the magnetic configuration and the trigger. We do not impose any artificial motions on the boundaries. Once the original flux tube configuration is chosen the system is left to evolve itself. Methods. We perform non-linear simulations in 2.5D by solving the compressible and resistive MHD equations using a Lagrangian remap, shock capturing code (Lare2D). To produce a quadrupolar configuration from flux emergence we build on previous work where the interaction of two flux tubes forms the required quadrupole. Instead of imposing a shearing flow, a third flux tube is then allowed to emerge up through the central arcade. Results. Breakout is not achieved in any of the experiments. This is due to the interaction of the third tube with the quadrupole and the effect of the plasma beta being O(1) at the photosphere and beta >= O(1) in the solar interior. When beta is of these orders, flows generated in the plasma can influence the magnetic field and so photospheric footpoints do not remain fixed.
Original languageEnglish
Pages (from-to)761-768
Number of pages8
JournalAstronomy and Astrophysics
Issue number2
Publication statusPublished - Jul 2009
Externally publishedYes


  • Magnetic fields
  • Magnetohydrodynamics (MHD)
  • Numerical simulation
  • Flux emergence


Dive into the research topics of 'Can magnetic breakout be achieved from multiple flux emergence?'. Together they form a unique fingerprint.

Cite this