Abstract
Nanocomposites as “stevedores” for co-delivery of multidrugs hold great promise in addressing the drawbacks of traditional cancer chemotherapy. In this work, our strategy presents a new avenue for the stepwise release of two co-delivered agents into the tumor cells. The hybrid nanocomposite consists of a pH-responsive chitosan (CS), a thermosensitive poly(N-vinylcaprolactam) (PNVCL) and a functionalized cell-penetrating peptide (H6R6). Doxorubicin (DOX) and oleanolic acid (OA) are loaded into the nanocomposite (H6R6-CS-g-PNVCL). The system displayed a suitable size (∼190 nm), a high DOX loading (13.2%) and OA loading efficiency (7.3%). The tumor microenvironment triggered the nanocomposite to be selectively retained in tumor cells, then releasing the drugs. Both in vitro and in vivo studies showed a significant enhancement in antitumor activity of the co-delivered system in comparison to mono-delivery. This approach which relies on redox, pH and temperature effects utilizing co-delivery nanosystems may be beneficial for future applications in cancer chemotherapy.
Original language | English |
---|---|
Article number | 116672 |
Number of pages | 12 |
Journal | Carbohydrate Polymers |
Volume | 247 |
Early online date | 23 Jun 2020 |
DOIs | |
Publication status | Published - 1 Nov 2020 |
Keywords
- Chitosan
- H6R6 peptide
- Triple sensitivity
- Controlled release
- Chemotherapy