Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation

A. Nayyar, A. K. Adya, G. Walker, E. Canetta, F. Wardrop

    Research output: Contribution to conferencePoster

    Abstract

    Adhesion properties are known to play important roles in governing many essential aspects of the life cycles of microorganisms, like sexual reproduction, cellular aggregation during processes such as flocculation and bio-film formation, invasion and/or pathogenic behavior, and many others. Adhesion properties, by far, are dependent on the characteristics of the cellular surface, usually the outer layer of the cell wall. Microorganisms can adjust their adhesion properties by changing the structure of their external cell surface. Flocculence is the ability of yeast cells to flocculate under optimal conditions, which is a cell wall property independent of its environment. Thus, when we study flocculation we need to consider the cell wall properties The flocculation behavior of four industrial Saccharomyces cerevisiae strains expressing either the Flo1 or NewFlo phenotype were examined. These are strains employed for brewing, champagne production, winemaking, and fuel alcohol production. The behavior of brewing and champagne strains differed in terms of their cell surface hydrophobicity, cell surface charge, and presence of adhesins and cell wall binding sites (mannose residues), which likely impinge on their flocculation behavior. The brewing yeast strain exhibited the highest degree of flocculation among all the strains, and it was accompanied with a concomitantly high hydrophobicity index of 66%. This supports our hypothesis that cell surface hydrophobicity plays a major role in controlling yeast flocculation behavior in the fermenter. Equally important is cell surface charge, which was shown in highly flocculent brewing strains to possess a very high negative charge. From the studies, it was observed that high cell surface hydrophobicity, bonds between the adhesins and mannose residues (stabilized by Ca2+ ions), and finally the surface topography of yeast strains are responsible for maintaining flocs during the fermentation process. We have additionally observed that in contrast to wine and fuel alcohol yeast strains, brewing and champagne strains exhibit increased cell wall mannose concentrations from the early stationary phase to the late stationary phase. This correlates with simultaneous increase in flocculation ability. Brewing yeasts, therefore, may be characterized by a high density of mannose residues on their outer cell walls. In addition, we found that the brewing yeast strain studied had a high lectin density (3.65 × 106 lectins /cell) compared with the champagne strain (2.44 × 106 lectins/cell). Yeast adhesion properties and cell wall physiology were further investigated at the nanoscale using atomic force microscopy (AFM). For example, surface roughness, Young’s modulus, and adhesion energy of industrial yeast strains determined by AFM provided new information regarding yeast cell walls and physiological behavior. The work will further aid in greater understanding of the onset of yeast flocculation, and the vital role that cell surface hydrophobicity, cell surface charge, and surface topography, together with the density of adhesins on the yeast cell surface, play in brewing processes during fermentation.
    Original languageEnglish
    PagesA-48
    Number of pages1
    Publication statusPublished - 2014
    Event2014 ASBC Annual Meeting - Palmer House, a Hilton Hotel, Chicago, United States
    Duration: 4 Jun 20146 Jun 2014

    Other

    Other2014 ASBC Annual Meeting
    CountryUnited States
    CityChicago
    Period4/06/146/06/14

    Fingerprint

    Surface Properties
    Fermentation
    Flocculation
    Yeasts
    Cell Wall
    Hydrophobic and Hydrophilic Interactions
    Mannose
    Lectins
    Atomic Force Microscopy
    Alcohols
    Cell Physiological Phenomena
    Elastic Modulus
    Wine
    Life Cycle Stages
    Reproduction
    Saccharomyces cerevisiae
    Binding Sites
    Ions

    Cite this

    Nayyar, A., Adya, A. K., Walker, G., Canetta, E., & Wardrop, F. (2014). Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation. A-48. Poster session presented at 2014 ASBC Annual Meeting, Chicago, United States.
    Nayyar, A. ; Adya, A. K. ; Walker, G. ; Canetta, E. ; Wardrop, F. / Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation. Poster session presented at 2014 ASBC Annual Meeting, Chicago, United States.1 p.
    @conference{6830fd491c9d43fb9d705afb683d1555,
    title = "Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation",
    abstract = "Adhesion properties are known to play important roles in governing many essential aspects of the life cycles of microorganisms, like sexual reproduction, cellular aggregation during processes such as flocculation and bio-film formation, invasion and/or pathogenic behavior, and many others. Adhesion properties, by far, are dependent on the characteristics of the cellular surface, usually the outer layer of the cell wall. Microorganisms can adjust their adhesion properties by changing the structure of their external cell surface. Flocculence is the ability of yeast cells to flocculate under optimal conditions, which is a cell wall property independent of its environment. Thus, when we study flocculation we need to consider the cell wall properties The flocculation behavior of four industrial Saccharomyces cerevisiae strains expressing either the Flo1 or NewFlo phenotype were examined. These are strains employed for brewing, champagne production, winemaking, and fuel alcohol production. The behavior of brewing and champagne strains differed in terms of their cell surface hydrophobicity, cell surface charge, and presence of adhesins and cell wall binding sites (mannose residues), which likely impinge on their flocculation behavior. The brewing yeast strain exhibited the highest degree of flocculation among all the strains, and it was accompanied with a concomitantly high hydrophobicity index of 66{\%}. This supports our hypothesis that cell surface hydrophobicity plays a major role in controlling yeast flocculation behavior in the fermenter. Equally important is cell surface charge, which was shown in highly flocculent brewing strains to possess a very high negative charge. From the studies, it was observed that high cell surface hydrophobicity, bonds between the adhesins and mannose residues (stabilized by Ca2+ ions), and finally the surface topography of yeast strains are responsible for maintaining flocs during the fermentation process. We have additionally observed that in contrast to wine and fuel alcohol yeast strains, brewing and champagne strains exhibit increased cell wall mannose concentrations from the early stationary phase to the late stationary phase. This correlates with simultaneous increase in flocculation ability. Brewing yeasts, therefore, may be characterized by a high density of mannose residues on their outer cell walls. In addition, we found that the brewing yeast strain studied had a high lectin density (3.65 × 106 lectins /cell) compared with the champagne strain (2.44 × 106 lectins/cell). Yeast adhesion properties and cell wall physiology were further investigated at the nanoscale using atomic force microscopy (AFM). For example, surface roughness, Young’s modulus, and adhesion energy of industrial yeast strains determined by AFM provided new information regarding yeast cell walls and physiological behavior. The work will further aid in greater understanding of the onset of yeast flocculation, and the vital role that cell surface hydrophobicity, cell surface charge, and surface topography, together with the density of adhesins on the yeast cell surface, play in brewing processes during fermentation.",
    author = "A. Nayyar and Adya, {A. K.} and G. Walker and E. Canetta and F. Wardrop",
    year = "2014",
    language = "English",
    pages = "A--48",
    note = "2014 ASBC Annual Meeting ; Conference date: 04-06-2014 Through 06-06-2014",

    }

    Nayyar, A, Adya, AK, Walker, G, Canetta, E & Wardrop, F 2014, 'Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation' 2014 ASBC Annual Meeting, Chicago, United States, 4/06/14 - 6/06/14, pp. A-48.

    Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation. / Nayyar, A.; Adya, A. K.; Walker, G.; Canetta, E.; Wardrop, F.

    2014. A-48 Poster session presented at 2014 ASBC Annual Meeting, Chicago, United States.

    Research output: Contribution to conferencePoster

    TY - CONF

    T1 - Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation

    AU - Nayyar, A.

    AU - Adya, A. K.

    AU - Walker, G.

    AU - Canetta, E.

    AU - Wardrop, F.

    PY - 2014

    Y1 - 2014

    N2 - Adhesion properties are known to play important roles in governing many essential aspects of the life cycles of microorganisms, like sexual reproduction, cellular aggregation during processes such as flocculation and bio-film formation, invasion and/or pathogenic behavior, and many others. Adhesion properties, by far, are dependent on the characteristics of the cellular surface, usually the outer layer of the cell wall. Microorganisms can adjust their adhesion properties by changing the structure of their external cell surface. Flocculence is the ability of yeast cells to flocculate under optimal conditions, which is a cell wall property independent of its environment. Thus, when we study flocculation we need to consider the cell wall properties The flocculation behavior of four industrial Saccharomyces cerevisiae strains expressing either the Flo1 or NewFlo phenotype were examined. These are strains employed for brewing, champagne production, winemaking, and fuel alcohol production. The behavior of brewing and champagne strains differed in terms of their cell surface hydrophobicity, cell surface charge, and presence of adhesins and cell wall binding sites (mannose residues), which likely impinge on their flocculation behavior. The brewing yeast strain exhibited the highest degree of flocculation among all the strains, and it was accompanied with a concomitantly high hydrophobicity index of 66%. This supports our hypothesis that cell surface hydrophobicity plays a major role in controlling yeast flocculation behavior in the fermenter. Equally important is cell surface charge, which was shown in highly flocculent brewing strains to possess a very high negative charge. From the studies, it was observed that high cell surface hydrophobicity, bonds between the adhesins and mannose residues (stabilized by Ca2+ ions), and finally the surface topography of yeast strains are responsible for maintaining flocs during the fermentation process. We have additionally observed that in contrast to wine and fuel alcohol yeast strains, brewing and champagne strains exhibit increased cell wall mannose concentrations from the early stationary phase to the late stationary phase. This correlates with simultaneous increase in flocculation ability. Brewing yeasts, therefore, may be characterized by a high density of mannose residues on their outer cell walls. In addition, we found that the brewing yeast strain studied had a high lectin density (3.65 × 106 lectins /cell) compared with the champagne strain (2.44 × 106 lectins/cell). Yeast adhesion properties and cell wall physiology were further investigated at the nanoscale using atomic force microscopy (AFM). For example, surface roughness, Young’s modulus, and adhesion energy of industrial yeast strains determined by AFM provided new information regarding yeast cell walls and physiological behavior. The work will further aid in greater understanding of the onset of yeast flocculation, and the vital role that cell surface hydrophobicity, cell surface charge, and surface topography, together with the density of adhesins on the yeast cell surface, play in brewing processes during fermentation.

    AB - Adhesion properties are known to play important roles in governing many essential aspects of the life cycles of microorganisms, like sexual reproduction, cellular aggregation during processes such as flocculation and bio-film formation, invasion and/or pathogenic behavior, and many others. Adhesion properties, by far, are dependent on the characteristics of the cellular surface, usually the outer layer of the cell wall. Microorganisms can adjust their adhesion properties by changing the structure of their external cell surface. Flocculence is the ability of yeast cells to flocculate under optimal conditions, which is a cell wall property independent of its environment. Thus, when we study flocculation we need to consider the cell wall properties The flocculation behavior of four industrial Saccharomyces cerevisiae strains expressing either the Flo1 or NewFlo phenotype were examined. These are strains employed for brewing, champagne production, winemaking, and fuel alcohol production. The behavior of brewing and champagne strains differed in terms of their cell surface hydrophobicity, cell surface charge, and presence of adhesins and cell wall binding sites (mannose residues), which likely impinge on their flocculation behavior. The brewing yeast strain exhibited the highest degree of flocculation among all the strains, and it was accompanied with a concomitantly high hydrophobicity index of 66%. This supports our hypothesis that cell surface hydrophobicity plays a major role in controlling yeast flocculation behavior in the fermenter. Equally important is cell surface charge, which was shown in highly flocculent brewing strains to possess a very high negative charge. From the studies, it was observed that high cell surface hydrophobicity, bonds between the adhesins and mannose residues (stabilized by Ca2+ ions), and finally the surface topography of yeast strains are responsible for maintaining flocs during the fermentation process. We have additionally observed that in contrast to wine and fuel alcohol yeast strains, brewing and champagne strains exhibit increased cell wall mannose concentrations from the early stationary phase to the late stationary phase. This correlates with simultaneous increase in flocculation ability. Brewing yeasts, therefore, may be characterized by a high density of mannose residues on their outer cell walls. In addition, we found that the brewing yeast strain studied had a high lectin density (3.65 × 106 lectins /cell) compared with the champagne strain (2.44 × 106 lectins/cell). Yeast adhesion properties and cell wall physiology were further investigated at the nanoscale using atomic force microscopy (AFM). For example, surface roughness, Young’s modulus, and adhesion energy of industrial yeast strains determined by AFM provided new information regarding yeast cell walls and physiological behavior. The work will further aid in greater understanding of the onset of yeast flocculation, and the vital role that cell surface hydrophobicity, cell surface charge, and surface topography, together with the density of adhesins on the yeast cell surface, play in brewing processes during fermentation.

    M3 - Poster

    SP - A-48

    ER -

    Nayyar A, Adya AK, Walker G, Canetta E, Wardrop F. Correlation of cell surface properties of industrial yeast strains to their functional role in fermentation. 2014. Poster session presented at 2014 ASBC Annual Meeting, Chicago, United States.