Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum)

John E. Bradshaw*, Christine A. Hackett, Robert Lowe, Karen McLean, Helen E. Stewart, Irene Tierney, Marco D. R. Vilaro, Glenn J. Bryan

*Corresponding author for this work

Research output: Contribution to journalArticle

27 Citations (Scopus)


Linkage analysis, Kruskal-Wallis analysis, interval mapping and graphical genotyping were performed on a potato diploid backcross family comprising 120 clones segregating for resistance to late blight. A hybrid between the Solanum tuberosum dihaploid clone PDH247 and the long-day-adapted S. phureja clone DB226(70) had been crossed to DB226(70) to produce the backcross family. Eighteen AFLP primer combinations provided 186 and 123 informative maternal and paternal markers respectively, with 63 markers in common to both parents. Eleven microsatellite (SSR) markers proved useful for identifying chromosomes. Linkage maps of both backcross parents were constructed. The results of a Kruskal-Wallis analysis, interval mapping and graphical genotyping were all consistent with a QTL or QTLs for blight resistance between two AFLP markers 30 cM apart on chromosome 4, which was identified by a microsatellite marker. The simplest explanation of the results is a single QTL with an allele from the dihaploid parent conferring resistance to race 1, 4 of P. infestans in the foliage in the glasshouse and to race 1, 2, 3, 4, 6, 7 in the foliage in the field and in tubers from glasshouse raised plants. The QTL was of large effect, and explained 78 and 51% of the variation in phenotypic scores for foliage blight in the glasshouse and field respectively, as well as 27% of the variation in tuber blight. Graphical genotyping and the differences in blight scores between the parental clones showed that all of the foliage blight resistance is accounted for by chromosome 4, whereas undetected QTLs for tuber resistance probably exist on other chromosomes. Graphical genotyping also explained the lack of precision in mapping the QTL(s) in terms of lack of appropriate recombinant chromosomes.
Original languageEnglish
Pages (from-to)943-951
Number of pages9
JournalTheoretical And Applied Genetics
Issue number5
Early online date15 Jul 2006
Publication statusPublished - Sep 2006
Externally publishedYes


Cite this