Early adaptations to a two-week uphill run sprint interval training and cycle sprint interval training

Mykolas Kavaliauskas, John Jakeman, John Babraj

Research output: Contribution to journalArticle

10 Downloads (Pure)

Abstract

This study sought to compare early physiological and performance adaptations between a two-week cycle sprint interval training (SIT) and uphill run sprint training (UST) programs. Seventeen recreationally active adult males (age = 28 ± 5 years; body mass (BM) = 78 ± 9 kg) were assigned to either a control (n = 5), SIT (n = 6), or UST (n = 6) group. A discrete group of participants (n = 6, age = 33 ± 6 years, and body mass = 80 ± 9 kg) completed both training protocols to determine acute physiological responses. Intervention groups completed either a run or cycle peak oxygen uptake (VO2peak) test (intervention type dependent) prior to and following two weeks of training. Training comprised of three sessions per week of 4 × 30-s “all-out” sprints with a four-minute active recovery between bouts on a cycle ergometer against 7.5% of body mass in the SIT group and on a 10% slope in the UST group. The VO2peak values remained unchanged in both training groups, but time-to-exhaustion (TTE) was significantly increased only in the UST group (pre—495 ± 40 s, post—551 ± 15 s; p = 0.014) and not in the SIT group (pre—613 ± 130 s, post—634 ± 118 s, p = 0.07). Ventilatory threshold (VT) was significantly increased in both training groups (SIT group: pre—1.94 ± 0.45 L·min−1, post—2.23 ± 0.42 L·min−1; p < 0.005, UST group: pre—2.04 ± 0.40 L·min−1, post—2.33 ± 0.34 L·min−1, p < 0.005). These results indicate that UST may be an effective alternative to SIT in healthy individuals.
Original languageEnglish
Article number72
Number of pages13
JournalSports
Volume6
Issue number3
DOIs
Publication statusPublished - 27 Jul 2018

Fingerprint

Physiological Adaptation
High-Intensity Interval Training
Oxygen
Education

Cite this

@article{55c51b79c7d04f299439712ecce5310c,
title = "Early adaptations to a two-week uphill run sprint interval training and cycle sprint interval training",
abstract = "This study sought to compare early physiological and performance adaptations between a two-week cycle sprint interval training (SIT) and uphill run sprint training (UST) programs. Seventeen recreationally active adult males (age = 28 ± 5 years; body mass (BM) = 78 ± 9 kg) were assigned to either a control (n = 5), SIT (n = 6), or UST (n = 6) group. A discrete group of participants (n = 6, age = 33 ± 6 years, and body mass = 80 ± 9 kg) completed both training protocols to determine acute physiological responses. Intervention groups completed either a run or cycle peak oxygen uptake (VO2peak) test (intervention type dependent) prior to and following two weeks of training. Training comprised of three sessions per week of 4 × 30-s “all-out” sprints with a four-minute active recovery between bouts on a cycle ergometer against 7.5{\%} of body mass in the SIT group and on a 10{\%} slope in the UST group. The VO2peak values remained unchanged in both training groups, but time-to-exhaustion (TTE) was significantly increased only in the UST group (pre—495 ± 40 s, post—551 ± 15 s; p = 0.014) and not in the SIT group (pre—613 ± 130 s, post—634 ± 118 s, p = 0.07). Ventilatory threshold (VT) was significantly increased in both training groups (SIT group: pre—1.94 ± 0.45 L·min−1, post—2.23 ± 0.42 L·min−1; p < 0.005, UST group: pre—2.04 ± 0.40 L·min−1, post—2.33 ± 0.34 L·min−1, p < 0.005). These results indicate that UST may be an effective alternative to SIT in healthy individuals.",
author = "Mykolas Kavaliauskas and John Jakeman and John Babraj",
year = "2018",
month = "7",
day = "27",
doi = "10.3390/sports6030072",
language = "English",
volume = "6",
journal = "Sports",
issn = "2075-4663",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "3",

}

Early adaptations to a two-week uphill run sprint interval training and cycle sprint interval training. / Kavaliauskas, Mykolas; Jakeman, John; Babraj, John.

In: Sports, Vol. 6, No. 3, 72, 27.07.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Early adaptations to a two-week uphill run sprint interval training and cycle sprint interval training

AU - Kavaliauskas, Mykolas

AU - Jakeman, John

AU - Babraj, John

PY - 2018/7/27

Y1 - 2018/7/27

N2 - This study sought to compare early physiological and performance adaptations between a two-week cycle sprint interval training (SIT) and uphill run sprint training (UST) programs. Seventeen recreationally active adult males (age = 28 ± 5 years; body mass (BM) = 78 ± 9 kg) were assigned to either a control (n = 5), SIT (n = 6), or UST (n = 6) group. A discrete group of participants (n = 6, age = 33 ± 6 years, and body mass = 80 ± 9 kg) completed both training protocols to determine acute physiological responses. Intervention groups completed either a run or cycle peak oxygen uptake (VO2peak) test (intervention type dependent) prior to and following two weeks of training. Training comprised of three sessions per week of 4 × 30-s “all-out” sprints with a four-minute active recovery between bouts on a cycle ergometer against 7.5% of body mass in the SIT group and on a 10% slope in the UST group. The VO2peak values remained unchanged in both training groups, but time-to-exhaustion (TTE) was significantly increased only in the UST group (pre—495 ± 40 s, post—551 ± 15 s; p = 0.014) and not in the SIT group (pre—613 ± 130 s, post—634 ± 118 s, p = 0.07). Ventilatory threshold (VT) was significantly increased in both training groups (SIT group: pre—1.94 ± 0.45 L·min−1, post—2.23 ± 0.42 L·min−1; p < 0.005, UST group: pre—2.04 ± 0.40 L·min−1, post—2.33 ± 0.34 L·min−1, p < 0.005). These results indicate that UST may be an effective alternative to SIT in healthy individuals.

AB - This study sought to compare early physiological and performance adaptations between a two-week cycle sprint interval training (SIT) and uphill run sprint training (UST) programs. Seventeen recreationally active adult males (age = 28 ± 5 years; body mass (BM) = 78 ± 9 kg) were assigned to either a control (n = 5), SIT (n = 6), or UST (n = 6) group. A discrete group of participants (n = 6, age = 33 ± 6 years, and body mass = 80 ± 9 kg) completed both training protocols to determine acute physiological responses. Intervention groups completed either a run or cycle peak oxygen uptake (VO2peak) test (intervention type dependent) prior to and following two weeks of training. Training comprised of three sessions per week of 4 × 30-s “all-out” sprints with a four-minute active recovery between bouts on a cycle ergometer against 7.5% of body mass in the SIT group and on a 10% slope in the UST group. The VO2peak values remained unchanged in both training groups, but time-to-exhaustion (TTE) was significantly increased only in the UST group (pre—495 ± 40 s, post—551 ± 15 s; p = 0.014) and not in the SIT group (pre—613 ± 130 s, post—634 ± 118 s, p = 0.07). Ventilatory threshold (VT) was significantly increased in both training groups (SIT group: pre—1.94 ± 0.45 L·min−1, post—2.23 ± 0.42 L·min−1; p < 0.005, UST group: pre—2.04 ± 0.40 L·min−1, post—2.33 ± 0.34 L·min−1, p < 0.005). These results indicate that UST may be an effective alternative to SIT in healthy individuals.

U2 - 10.3390/sports6030072

DO - 10.3390/sports6030072

M3 - Article

VL - 6

JO - Sports

JF - Sports

SN - 2075-4663

IS - 3

M1 - 72

ER -