Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations

Takaki Yamagishi*, John A. Babraj

*Corresponding author for this work

Research output: Contribution to journalArticle

8 Citations (Scopus)
116 Downloads (Pure)

Abstract

This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15-s training group (15TG) consisting of 4 to 6 x 15-s sprints interspersed with 2-min recovery, whereas eight participants (M: 5; F: 3) were assigned to 30-s training group (30TG) consisting of 4 to 6 30-s sprints interspersed with 4-min recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake (V̇O2peak) and time to exhaustion (TTE) were assessed every 3 weeks. Additional 8 healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved V̇O2peak (15TG: 12.1%; 30TG: 12.8%, P < 0.05) and TTE (15TG: 16.2%; 30TG: 12.8%, P < 0.01) to a similar extent. However, while both groups showed the greatest gains in V̇O2peak at 3 weeks (15TG: 16.6%; 30TG: 17.0%, P < 0.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that whilst the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately-trained individuals. Furthermore, a 50% reduction in sprint duration does not diminish overall training adaptations over 9 weeks.
Original languageEnglish
Pages (from-to)1662-1672
Number of pages11
JournalScandinavian Journal of Medicine and Science in Sports
Volume27
Issue number12
Early online date29 Nov 2017
DOIs
Publication statusPublished - Dec 2017

Fingerprint

Physiological Adaptation
High-Intensity Interval Training
Oxygen
Education
Control Groups

Cite this

@article{72e3a244cb714e6a9e1af58c41cf2e4f,
title = "Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations",
abstract = "This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15-s training group (15TG) consisting of 4 to 6 x 15-s sprints interspersed with 2-min recovery, whereas eight participants (M: 5; F: 3) were assigned to 30-s training group (30TG) consisting of 4 to 6 30-s sprints interspersed with 4-min recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake (V̇O2peak) and time to exhaustion (TTE) were assessed every 3 weeks. Additional 8 healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved V̇O2peak (15TG: 12.1{\%}; 30TG: 12.8{\%}, P < 0.05) and TTE (15TG: 16.2{\%}; 30TG: 12.8{\%}, P < 0.01) to a similar extent. However, while both groups showed the greatest gains in V̇O2peak at 3 weeks (15TG: 16.6{\%}; 30TG: 17.0{\%}, P < 0.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that whilst the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately-trained individuals. Furthermore, a 50{\%} reduction in sprint duration does not diminish overall training adaptations over 9 weeks.",
author = "Takaki Yamagishi and Babraj, {John A.}",
year = "2017",
month = "12",
doi = "10.1111/sms.12831",
language = "English",
volume = "27",
pages = "1662--1672",
journal = "Scandinavian Journal of Medicine and Science in Sports",
issn = "0905-7188",
publisher = "Blackwell Munksgaard",
number = "12",

}

TY - JOUR

T1 - Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations

AU - Yamagishi, Takaki

AU - Babraj, John A.

PY - 2017/12

Y1 - 2017/12

N2 - This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15-s training group (15TG) consisting of 4 to 6 x 15-s sprints interspersed with 2-min recovery, whereas eight participants (M: 5; F: 3) were assigned to 30-s training group (30TG) consisting of 4 to 6 30-s sprints interspersed with 4-min recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake (V̇O2peak) and time to exhaustion (TTE) were assessed every 3 weeks. Additional 8 healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved V̇O2peak (15TG: 12.1%; 30TG: 12.8%, P < 0.05) and TTE (15TG: 16.2%; 30TG: 12.8%, P < 0.01) to a similar extent. However, while both groups showed the greatest gains in V̇O2peak at 3 weeks (15TG: 16.6%; 30TG: 17.0%, P < 0.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that whilst the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately-trained individuals. Furthermore, a 50% reduction in sprint duration does not diminish overall training adaptations over 9 weeks.

AB - This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15-s training group (15TG) consisting of 4 to 6 x 15-s sprints interspersed with 2-min recovery, whereas eight participants (M: 5; F: 3) were assigned to 30-s training group (30TG) consisting of 4 to 6 30-s sprints interspersed with 4-min recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake (V̇O2peak) and time to exhaustion (TTE) were assessed every 3 weeks. Additional 8 healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved V̇O2peak (15TG: 12.1%; 30TG: 12.8%, P < 0.05) and TTE (15TG: 16.2%; 30TG: 12.8%, P < 0.01) to a similar extent. However, while both groups showed the greatest gains in V̇O2peak at 3 weeks (15TG: 16.6%; 30TG: 17.0%, P < 0.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that whilst the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately-trained individuals. Furthermore, a 50% reduction in sprint duration does not diminish overall training adaptations over 9 weeks.

U2 - 10.1111/sms.12831

DO - 10.1111/sms.12831

M3 - Article

VL - 27

SP - 1662

EP - 1672

JO - Scandinavian Journal of Medicine and Science in Sports

JF - Scandinavian Journal of Medicine and Science in Sports

SN - 0905-7188

IS - 12

ER -