Abstract
Electron paramagnetic resonance (EPR) measurements have been made of defects in amorphous hydrogenated carbon (a-C:H) thin films. The films were grown on silicon substrates on the earthed electrode of an rf-powered plasma enhanced chemical vapour deposition reactor and were subsequently implanted with a range of doses of boron, carbon or nitrogen ions with energies from 20 keV to 32.5 keV. Two paramagnetic centres are observed, the carbon defect in the film with g = 2.0028(1) and a silicon defect in the substrate with g = 2.0058(6). The volume concentration of the carbon defect increases approximately linearly with dose, from approximately 3 × 1017 cm-3 for unimplanted samples to 2.7 × 1020 cm-3 at the highest implantation of 2 × 1016 B+ ions cm-2. The increase in dose over this range also causes a narrowing of the EPR line (from 0.83 mT to 0.13 mT) and a significant decrease in the spin-lattice relaxation time (from 3 × 10-5 s to 6 × 10-8 s) which approaches the spin-spin relaxation time at the highest dose. The narrowing is attributed to motional averaging produced by either exchange or hopping. We also report the effects of annealing samples implanted with a range of boron doses. The prime novelty of this paper is that it is the first EPR study of defects produced by the implantation of a range of ions into polymer-like amorphous hydrogenated carbon.
Original language | English |
---|---|
Pages (from-to) | 993-997 |
Number of pages | 5 |
Journal | Diamond and Related Materials |
Volume | 10 |
Issue number | 3-7 |
DOIs | |
Publication status | Published - Mar 2001 |
Externally published | Yes |
Keywords
- Amorphous hydrogenated carbon
- Defect
- Ion implantation
- Annealing