From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate

Matt I. D. Carter, Brett T. McClintock, Clare B. Embling, Kimberley A. Bennett, Dave Thompson, Debbie J.F. Russell*

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements.
Original languageEnglish
Number of pages29
JournalOikos
Early online date24 Dec 2019
DOIs
Publication statusE-pub ahead of print - 24 Dec 2019

Fingerprint

pups
vertebrate
vertebrates
foraging
predator
predators
foraging behavior
seals
Halichoerus grypus
dimorphism
conservation management
activity pattern
telemetry
ontogeny
gender differences
travel
United Kingdom
population dynamics
ecology
environmental factors

Cite this

Carter, Matt I. D. ; McClintock, Brett T. ; Embling, Clare B. ; Bennett, Kimberley A. ; Thompson, Dave ; Russell, Debbie J.F. / From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate. In: Oikos. 2019.
@article{bca1095e68e44203a1edc147e37e5353,
title = "From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a na{\"i}ve long‐lived vertebrate",
abstract = "Rapid development of a successful foraging strategy is critical for juvenile survival, especially for na{\"i}ve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements.",
author = "Carter, {Matt I. D.} and McClintock, {Brett T.} and Embling, {Clare B.} and Bennett, {Kimberley A.} and Dave Thompson and Russell, {Debbie J.F.}",
year = "2019",
month = "12",
day = "24",
doi = "10.1111/oik.06853",
language = "English",
journal = "Oikos",
issn = "0030-1299",
publisher = "Wiley-Blackwell",

}

From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate. / Carter, Matt I. D.; McClintock, Brett T.; Embling, Clare B.; Bennett, Kimberley A. ; Thompson, Dave; Russell, Debbie J.F.

In: Oikos, 24.12.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate

AU - Carter, Matt I. D.

AU - McClintock, Brett T.

AU - Embling, Clare B.

AU - Bennett, Kimberley A.

AU - Thompson, Dave

AU - Russell, Debbie J.F.

PY - 2019/12/24

Y1 - 2019/12/24

N2 - Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements.

AB - Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements.

U2 - 10.1111/oik.06853

DO - 10.1111/oik.06853

M3 - Article

JO - Oikos

JF - Oikos

SN - 0030-1299

ER -