Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics

Veronica L. Morales, Wei Zhang, Bin Gao, Leonard W. Lion, James J. Bisogni Jr., Brendan A. McDonough, Tammo S. Steenhuis

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl2 concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca+2 which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.
Original languageEnglish
Pages (from-to)1691-1701
JournalWater Research
Volume45
Issue number4
DOIs
Publication statusPublished - Feb 2011

Fingerprint

colloid
vadose zone
dissolved organic matter
coating
fulvic acid
experiment
air
breakthrough curve
neutralization
water
humic acid
visualization
porous medium
microscopy
stabilization
partitioning
polymer

Cite this

Morales, Veronica L. ; Zhang, Wei ; Gao, Bin ; Lion, Leonard W. ; Bisogni Jr., James J. ; McDonough, Brendan A. ; Steenhuis, Tammo S. / Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. In: Water Research. 2011 ; Vol. 45, No. 4. pp. 1691-1701.
@article{d30f4760aa714fba860623361a7dbe19,
title = "Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics",
abstract = "Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl2 concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca+2 which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.",
author = "Morales, {Veronica L.} and Wei Zhang and Bin Gao and Lion, {Leonard W.} and {Bisogni Jr.}, {James J.} and McDonough, {Brendan A.} and Steenhuis, {Tammo S.}",
year = "2011",
month = "2",
doi = "10.1016/j.watres.2010.10.030",
language = "English",
volume = "45",
pages = "1691--1701",
journal = "Water Research",
issn = "0043-1354",
publisher = "Elsevier Ltd",
number = "4",

}

Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. / Morales, Veronica L.; Zhang, Wei; Gao, Bin; Lion, Leonard W.; Bisogni Jr., James J.; McDonough, Brendan A.; Steenhuis, Tammo S.

In: Water Research, Vol. 45, No. 4, 02.2011, p. 1691-1701.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics

AU - Morales, Veronica L.

AU - Zhang, Wei

AU - Gao, Bin

AU - Lion, Leonard W.

AU - Bisogni Jr., James J.

AU - McDonough, Brendan A.

AU - Steenhuis, Tammo S.

PY - 2011/2

Y1 - 2011/2

N2 - Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl2 concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca+2 which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.

AB - Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl2 concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca+2 which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.

U2 - 10.1016/j.watres.2010.10.030

DO - 10.1016/j.watres.2010.10.030

M3 - Article

VL - 45

SP - 1691

EP - 1701

JO - Water Research

JF - Water Research

SN - 0043-1354

IS - 4

ER -