Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components

Anna Gras, Marta Ginovart, Joaquim Valls, Philippe C. Baveye

Research output: Contribution to journalArticle

  • 13 Citations

Abstract

The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems. Highlights ► The individual-based INDISIM-SOM model is far more sensitive to some parameters than to others. ► Key parameters for the evolution of C and N are microbial maintenance, energy, and death probability. ► The nitrification rate, in particular, appears highly affected by the death probability. ► The sensitivity analysis indicates what simplification of the model is possible. ► It also shows which parameters need to be evaluated with more accuracy than is currently achievable.
Original languageEnglish
Pages (from-to)1998-2010
Number of pages13
JournalEcological Modelling
DOIs
StatePublished - Jun 2011

Fingerprint

soil
soil ecosystem
sensitivity analysis
soil organic matter
nitrogen
carbon
energy
Mediterranean soil
nitrogen compound
soil nitrogen
temporal evolution
soil carbon
microbial activity
nitrification
parameterization
ammonium
microorganism
metabolism
incubation
nitrate

Cite this

Gras, Anna; Ginovart, Marta; Valls, Joaquim; Baveye, Philippe C. / Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components.

In: Ecological Modelling, 06.2011, p. 1998-2010.

Research output: Contribution to journalArticle

@article{ee2d38b041504d2aadbfec7b61fb5ac8,
title = "Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components",
abstract = "The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems. Highlights ► The individual-based INDISIM-SOM model is far more sensitive to some parameters than to others. ► Key parameters for the evolution of C and N are microbial maintenance, energy, and death probability. ► The nitrification rate, in particular, appears highly affected by the death probability. ► The sensitivity analysis indicates what simplification of the model is possible. ► It also shows which parameters need to be evaluated with more accuracy than is currently achievable.",
author = "Anna Gras and Marta Ginovart and Joaquim Valls and Baveye, {Philippe C.}",
year = "2011",
month = "6",
doi = "10.1016/j.ecolmodel.2011.03.009",
pages = "1998--2010",
journal = "Ecological Modelling",

}

Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components. / Gras, Anna; Ginovart, Marta; Valls, Joaquim; Baveye, Philippe C.

In: Ecological Modelling, 06.2011, p. 1998-2010.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components

AU - Gras,Anna

AU - Ginovart,Marta

AU - Valls,Joaquim

AU - Baveye,Philippe C.

PY - 2011/6

Y1 - 2011/6

N2 - The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems. Highlights ► The individual-based INDISIM-SOM model is far more sensitive to some parameters than to others. ► Key parameters for the evolution of C and N are microbial maintenance, energy, and death probability. ► The nitrification rate, in particular, appears highly affected by the death probability. ► The sensitivity analysis indicates what simplification of the model is possible. ► It also shows which parameters need to be evaluated with more accuracy than is currently achievable.

AB - The fate of soil carbon and nitrogen compounds in soils in response to climate change is currently the object of significant research. In particular, there is much interest in the development of a new generation of micro-scale models of soil ecosystems processes. Crucial to the elaboration of such models is the ability to describe the growth and metabolism of small numbers of individual microorganisms, distributed in a highly heterogeneous environment. In this context, the key objective of the research described in this article was to further develop an individual-based soil organic matter model, INDISIM-SOM, first proposed a few years ago, and to assess its performance with a broader experimental data set than previously considered. INDISIM-SOM models the dynamics and evolution of carbon and nitrogen associated with organic matter in soils. The model involves a number of state variables and parameters related to soil organic matter and microbial activity, including growth and decay of microbial biomass, temporal evolutions of easily hydrolysable N, mineral N in ammonium and nitrate, CO2 and O2. The present article concentrates on the biotic components of the model. Simulation results demonstrate that the model can be calibrated to provide good fit to experimental data from laboratory incubation experiments performed on three different types of Mediterranean soils. In addition, analysis of the sensitivity toward its biotic parameters shows that the model is far more sensitive to some parameters, i.e., the microbial maintenance energy and the probability of random microbial death, than to others. These results suggest that, in the future, research should focus on securing better measurements of these parameters, on environmental determinants of the switch from active to dormant states, and on the causes of random cell death in soil ecosystems. Highlights ► The individual-based INDISIM-SOM model is far more sensitive to some parameters than to others. ► Key parameters for the evolution of C and N are microbial maintenance, energy, and death probability. ► The nitrification rate, in particular, appears highly affected by the death probability. ► The sensitivity analysis indicates what simplification of the model is possible. ► It also shows which parameters need to be evaluated with more accuracy than is currently achievable.

U2 - 10.1016/j.ecolmodel.2011.03.009

DO - 10.1016/j.ecolmodel.2011.03.009

M3 - Article

SP - 1998

EP - 2010

JO - Ecological Modelling

T2 - Ecological Modelling

JF - Ecological Modelling

ER -