Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling

Catherine Kiely, Joel Rocha, Eamonn O'Connor, Donal O'Shea, Simon Green, Mikel Egana

Research output: Contribution to journalArticle

  • 1 Citations

Abstract

We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.
Original languageEnglish
Pages (from-to)R875-R883
Number of pages9
JournalAmerican Journal of Physiology
Volume309
Issue number8
DOIs
StatePublished - 15 Oct 2015

Fingerprint

Menopause
Cardiac Output
Exercise
Oxygen
Lung
Noble Gases

Cite this

Kiely, Catherine; Rocha, Joel; O'Connor, Eamonn; O'Shea, Donal; Green, Simon; Egana, Mikel / Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling.

In: American Journal of Physiology, Vol. 309, No. 8, 15.10.2015, p. R875-R883.

Research output: Contribution to journalArticle

@article{2dda55c1908f481da6188231a4607896,
title = "Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling",
abstract = "We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.",
author = "Catherine Kiely and Joel Rocha and Eamonn O'Connor and Donal O'Shea and Simon Green and Mikel Egana",
year = "2015",
month = "10",
doi = "10.1152/ajpregu.00258.2015",
volume = "309",
pages = "R875--R883",
journal = "American Journal of Physiology",
issn = "1522-1490",
number = "8",

}

Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling. / Kiely, Catherine; Rocha, Joel; O'Connor, Eamonn; O'Shea, Donal; Green, Simon; Egana, Mikel.

In: American Journal of Physiology, Vol. 309, No. 8, 15.10.2015, p. R875-R883.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling

AU - Kiely,Catherine

AU - Rocha,Joel

AU - O'Connor,Eamonn

AU - O'Shea,Donal

AU - Green,Simon

AU - Egana,Mikel

PY - 2015/10/15

Y1 - 2015/10/15

N2 - We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.

AB - We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.

U2 - 10.1152/ajpregu.00258.2015

DO - 10.1152/ajpregu.00258.2015

M3 - Article

VL - 309

SP - R875-R883

JO - American Journal of Physiology

T2 - American Journal of Physiology

JF - American Journal of Physiology

SN - 1522-1490

IS - 8

ER -