TY - JOUR
T1 - Modeling the repetitions-in-reserve-velocity relationship
T2 - a valid method for resistance training monitoring and prescription, and fatigue management
AU - Jukic, Ivan
AU - Prnjak, Katarina
AU - Helms, Eric R.
AU - McGuigan, Michael R.
N1 - © 2024 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Data availability statement:
The dataset and analysis code scripts are available at the Open Science Framework (URL: https://osf.io/5ejcp/).
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Establishing a relationship between repetitions left in reserve and the mean absolute velocity (RIR-velocity relationship) during resistance training (RT) could allow for objective monitoring, prescription, and real-time adjustment of the training load and set-volume. Therefore, we examined the goodness of fit and prediction accuracy of general and individual RIR-velocity relationships in the free-weight back squat exercise. The effects of sex, training status and history, as well as personality traits, on the goodness of fit and the accuracy of these relationships were also investigated. Forty-six resistance-trained people (15 females and 31 males) performed a one-repetition maximum (1RM) test, and two repetitions to failure (RTF) tests 72 h apart. We found greater goodness of fit of individual RIR-velocity relationships compared to general RIR-velocity relationships. Individual, but not general RIR-velocity relationships established in the first testing session yielded acceptable prediction accuracy of RIR (mean error <2 repetitions) in the subsequent testing session, regardless of the load used. Similar results were obtained when both general and individual RIR-velocity relationships were averaged across the loads, suggesting that a single RIR-velocity relationship covering a range of loads can be used instead of traditional RT methods, potentially allowing for better fatigue management and more efficient adaptation.
AB - Establishing a relationship between repetitions left in reserve and the mean absolute velocity (RIR-velocity relationship) during resistance training (RT) could allow for objective monitoring, prescription, and real-time adjustment of the training load and set-volume. Therefore, we examined the goodness of fit and prediction accuracy of general and individual RIR-velocity relationships in the free-weight back squat exercise. The effects of sex, training status and history, as well as personality traits, on the goodness of fit and the accuracy of these relationships were also investigated. Forty-six resistance-trained people (15 females and 31 males) performed a one-repetition maximum (1RM) test, and two repetitions to failure (RTF) tests 72 h apart. We found greater goodness of fit of individual RIR-velocity relationships compared to general RIR-velocity relationships. Individual, but not general RIR-velocity relationships established in the first testing session yielded acceptable prediction accuracy of RIR (mean error <2 repetitions) in the subsequent testing session, regardless of the load used. Similar results were obtained when both general and individual RIR-velocity relationships were averaged across the loads, suggesting that a single RIR-velocity relationship covering a range of loads can be used instead of traditional RT methods, potentially allowing for better fatigue management and more efficient adaptation.
UR - https://osf.io/5ejcp/
U2 - 10.14814/phy2.15955
DO - 10.14814/phy2.15955
M3 - Article
C2 - 38418370
SN - 2051-817X
VL - 12
JO - Physiological Reports
JF - Physiological Reports
IS - 5
M1 - e15955
ER -