Abstract
A new block polymer named poly 3-acrylamidophenylboronic acid-b-6-O–vinylazeloyl-d-galactose (p(AAPBA-b-OVZG)) was prepared using 3-acrylamidophenylboronic acid (AAPBA) and 6-O-vinylazeloyl-D-galactose (OVZG) via a two-step procedure involving S-1-dodecyl-S-(α', α'-dimethyl-α″-acetic acid) trithiocarbonate (DDATC) as chain transfer agent, 2,2-azobisisobutyronitrile (AIBN) as initiator and dimethyl formamide (DMF) as solvent. The structures of the polymer were examined by Fourier transform infrared spectroscopy (FT-IR) and 1H NMR and the thermal stability was determined by thermal gravimetric analysis (TG/DTG). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were utilized to evaluate the morphology and properties of the p(AAPBA-b-OVZG) nanoparticles. The cell toxicity, animal toxicity and therapeutic efficacy were also investigated. The results indicate the p(AAPBA-b-OVZG) was successfully synthesized and had excellent thermal stability. Moreover, the p(AAPBA-b-OVZG) nanoparticles were submicron in size and glucose-sensitive in phosphate-buffered saline (PBS). In addition, insulin as a model drug had a high encapsulation efficiency and loading capacity and the release of insulin was increased at higher glucose levels. Furthermore, the nanoparticles showed a low-toxicity in cell and animal studies and they were effective at decreasing blood glucose levels of mice over 96 h. These p(AAPBA-b-OVZG) nanoparticles show promise for applications in diabetes treatment using insulin or other hypoglycemic proteins.
| Original language | English |
|---|---|
| Pages (from-to) | 845–855 |
| Number of pages | 11 |
| Journal | Materials Science and Engineering C |
| Volume | 76 |
| Early online date | 18 Mar 2017 |
| DOIs | |
| Publication status | Published - 1 Jul 2017 |
Keywords
- 3-Acrylamidophenylboronic acid (AAPBA)
- 6-O-vinylazeloyl-d-galactose (OVZG)
- Nanoparticles (NPs)
- Glucose-sensitive
- Insulin delivery