Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest, and grassland in a temperate northern climate

Nicole A. L. Archer, Wilfred Otten, Sonja Schmidt, A. Glyn Bengough, Nadeem Shah, Mike Bonell

    Research output: Contribution to journalArticle

    10 Citations (Scopus)
    109 Downloads (Pure)

    Abstract

    How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250-year-old grazed grassland (GL), 6-year-old (6yr) and 48-year-old (48yr) Scots pine (Pinus sylvestris) plantations, remnant 300-year-old individual Scots pine (OT) and a 4000-year-old Caledonian Forest (AF). In situ field-saturated hydraulic conductivity (Kfs) was measured, and visible root:soil area was estimated from soil pits. Macroporosity, pore structure and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics.

    At all scales, the median values for Kfs, root fraction, macroporosity and connectivity values tended to AF > OT > 48yr > GL > 6yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to >4922 mm h−1), with maximum Kfs values 7 to 15 times larger than those of 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.
    Original languageEnglish
    Pages (from-to)585-600
    Number of pages16
    JournalEcohydrology
    Volume9
    Issue number4
    DOIs
    Publication statusPublished - 19 Jun 2015

    Fingerprint

    infiltration (hydrology)
    infiltration
    grasslands
    grassland
    climate
    rain
    rainfall
    Pinus sylvestris
    soil
    Caledonian orogeny
    water storage
    connectivity
    plantation
    plantations
    preferential flow
    macropore
    macropores
    water
    tomography
    saturated hydraulic conductivity

    Cite this

    Archer, Nicole A. L. ; Otten, Wilfred ; Schmidt, Sonja ; Bengough, A. Glyn ; Shah, Nadeem ; Bonell, Mike. / Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest, and grassland in a temperate northern climate. In: Ecohydrology. 2015 ; Vol. 9, No. 4. pp. 585-600.
    @article{8978429147284aada89e7a0fb77c9699,
    title = "Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest, and grassland in a temperate northern climate",
    abstract = "How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250-year-old grazed grassland (GL), 6-year-old (6yr) and 48-year-old (48yr) Scots pine (Pinus sylvestris) plantations, remnant 300-year-old individual Scots pine (OT) and a 4000-year-old Caledonian Forest (AF). In situ field-saturated hydraulic conductivity (Kfs) was measured, and visible root:soil area was estimated from soil pits. Macroporosity, pore structure and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics.At all scales, the median values for Kfs, root fraction, macroporosity and connectivity values tended to AF > OT > 48yr > GL > 6yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to >4922 mm h−1), with maximum Kfs values 7 to 15 times larger than those of 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.",
    author = "Archer, {Nicole A. L.} and Wilfred Otten and Sonja Schmidt and Bengough, {A. Glyn} and Nadeem Shah and Mike Bonell",
    year = "2015",
    month = "6",
    day = "19",
    doi = "10.1002/eco.1658",
    language = "English",
    volume = "9",
    pages = "585--600",
    journal = "Ecohydrology",
    issn = "1936-0584",
    publisher = "John Wiley and Sons Ltd",
    number = "4",

    }

    Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest, and grassland in a temperate northern climate. / Archer, Nicole A. L.; Otten, Wilfred; Schmidt, Sonja; Bengough, A. Glyn; Shah, Nadeem; Bonell, Mike.

    In: Ecohydrology, Vol. 9, No. 4, 19.06.2015, p. 585-600.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest, and grassland in a temperate northern climate

    AU - Archer, Nicole A. L.

    AU - Otten, Wilfred

    AU - Schmidt, Sonja

    AU - Bengough, A. Glyn

    AU - Shah, Nadeem

    AU - Bonell, Mike

    PY - 2015/6/19

    Y1 - 2015/6/19

    N2 - How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250-year-old grazed grassland (GL), 6-year-old (6yr) and 48-year-old (48yr) Scots pine (Pinus sylvestris) plantations, remnant 300-year-old individual Scots pine (OT) and a 4000-year-old Caledonian Forest (AF). In situ field-saturated hydraulic conductivity (Kfs) was measured, and visible root:soil area was estimated from soil pits. Macroporosity, pore structure and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics.At all scales, the median values for Kfs, root fraction, macroporosity and connectivity values tended to AF > OT > 48yr > GL > 6yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to >4922 mm h−1), with maximum Kfs values 7 to 15 times larger than those of 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.

    AB - How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250-year-old grazed grassland (GL), 6-year-old (6yr) and 48-year-old (48yr) Scots pine (Pinus sylvestris) plantations, remnant 300-year-old individual Scots pine (OT) and a 4000-year-old Caledonian Forest (AF). In situ field-saturated hydraulic conductivity (Kfs) was measured, and visible root:soil area was estimated from soil pits. Macroporosity, pore structure and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics.At all scales, the median values for Kfs, root fraction, macroporosity and connectivity values tended to AF > OT > 48yr > GL > 6yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to >4922 mm h−1), with maximum Kfs values 7 to 15 times larger than those of 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.

    U2 - 10.1002/eco.1658

    DO - 10.1002/eco.1658

    M3 - Article

    VL - 9

    SP - 585

    EP - 600

    JO - Ecohydrology

    JF - Ecohydrology

    SN - 1936-0584

    IS - 4

    ER -