Reverse engineering of biochar

Veronica L. Morales, Francisco J. Perez-Reche, Simona M. Hapca, Kelly L. Hanley, Johannes Lehmann, Wei Zhang

Research output: Contribution to journalArticle

15 Citations (Scopus)
12 Downloads (Pure)

Abstract

This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.
Original languageEnglish
Pages (from-to)163–174
Number of pages12
JournalBioresource Technology
Volume183
Early online date18 Feb 2015
DOIs
Publication statusPublished - May 2015

Fingerprint

Reverse engineering
engineering
metadata
Metadata
pyrolysis
Chemical properties
chemical property
Biomass
Pyrolysis
Engineers
biochar
biomass
temperature
Temperature
distribution
effect

Cite this

Morales, V. L., Perez-Reche, F. J., Hapca, S. M., Hanley, K. L., Lehmann, J., & Zhang, W. (2015). Reverse engineering of biochar. Bioresource Technology, 183, 163–174. https://doi.org/10.1016/j.biortech.2015.02.043
Morales, Veronica L. ; Perez-Reche, Francisco J. ; Hapca, Simona M. ; Hanley, Kelly L. ; Lehmann, Johannes ; Zhang, Wei. / Reverse engineering of biochar. In: Bioresource Technology. 2015 ; Vol. 183. pp. 163–174.
@article{3f10dc035ba5443e81e723b6792fef4f,
title = "Reverse engineering of biochar",
abstract = "This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.",
author = "Morales, {Veronica L.} and Perez-Reche, {Francisco J.} and Hapca, {Simona M.} and Hanley, {Kelly L.} and Johannes Lehmann and Wei Zhang",
year = "2015",
month = "5",
doi = "10.1016/j.biortech.2015.02.043",
language = "English",
volume = "183",
pages = "163–174",
journal = "Bioresource Technology",
issn = "0960-8524",
publisher = "Elsevier Limited",

}

Morales, VL, Perez-Reche, FJ, Hapca, SM, Hanley, KL, Lehmann, J & Zhang, W 2015, 'Reverse engineering of biochar', Bioresource Technology, vol. 183, pp. 163–174. https://doi.org/10.1016/j.biortech.2015.02.043

Reverse engineering of biochar. / Morales, Veronica L.; Perez-Reche, Francisco J.; Hapca, Simona M.; Hanley, Kelly L.; Lehmann, Johannes; Zhang, Wei.

In: Bioresource Technology, Vol. 183, 05.2015, p. 163–174.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Reverse engineering of biochar

AU - Morales, Veronica L.

AU - Perez-Reche, Francisco J.

AU - Hapca, Simona M.

AU - Hanley, Kelly L.

AU - Lehmann, Johannes

AU - Zhang, Wei

PY - 2015/5

Y1 - 2015/5

N2 - This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.

AB - This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.

U2 - 10.1016/j.biortech.2015.02.043

DO - 10.1016/j.biortech.2015.02.043

M3 - Article

VL - 183

SP - 163

EP - 174

JO - Bioresource Technology

JF - Bioresource Technology

SN - 0960-8524

ER -

Morales VL, Perez-Reche FJ, Hapca SM, Hanley KL, Lehmann J, Zhang W. Reverse engineering of biochar. Bioresource Technology. 2015 May;183:163–174. https://doi.org/10.1016/j.biortech.2015.02.043