Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC

O. Monga*, Patricia Garnier, V. Pot, E. Coucheney, N. Nunan, Wilfred Otten, Claire Chenu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)
    81 Downloads (Pure)

    Abstract

    This paper deals with the simulation of microbial degradation of organic matter in soil within the pore space at a microscopic scale. Pore space was analysed with micro-computed tomography and described using a sphere network coming from a geometrical modelling algorithm. The biological model was improved regarding previous work in order to include the transformation of dissolved organic compounds and diffusion processes. We tested our model using experimental results of a simple substrate decomposition experiment (fructose) within a simple medium (sand) in the presence of different bacterial strains. Separate incubations were carried out in microcosms using five different bacterial communities at two different water potentials of −10 and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content, and we tested the model without changing any parameters at low water content. Same as for the experimental data, our simulation results showed that the decrease in water content caused a decrease of mineralization rate. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content.
    Original languageEnglish
    Pages (from-to)2201-2209
    Number of pages9
    JournalBiogeosciences
    Volume11
    Early online date22 Apr 2014
    DOIs
    Publication statusPublished - 22 Apr 2014

    Fingerprint Dive into the research topics of 'Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC'. Together they form a unique fingerprint.

    Cite this