Site-directed chemical conversion of serine to cysteine in penicillin acylase from Escherichia coli ATCC 11105: Effect on conformation and catalytic activity

Andrew Slade, A. Janet Horrocks, Christopher D. Lindsay, Bryan Dunbar, Richard Virden

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Penicillin acylase (EC 3.5.1.11) was completely inactivated with equimolar phenylmethane [35S]sulphonyl fluoride (PhMe35SO2F); the stability of the sulphonyl group in the modified protein was determined by measurement of the radioactivity in ultrafiltrates. In 8 M urea, the rate of loss of the sulphonyl group was similar to that observed in PhMeSO2F-inactivated chymotrypsin [Gold, A. M. & Fahrney, D. (1964) Biochemistry 3, 783–791]. Incubation of the PhMeSO2F-inactivated acylase with 0.7 M potassium thioacetate yielded an acetylthiol enzyme which was subsequently converted to a thiol-enzyme during incubation with 10 mM 6-aminopenicillanic acid. 4-Pyridyl-ethylcysteine was released by acid hydrolysis after reaction of the thiol-protein with 4-vinylpyridine. The rates of reaction of thiol-penicillin acylase with iodoacetic acid and 2,2′-dipyridyl disulphide were consistent with the presence of an incompletely accessible cysteinyl sidechain. After carboxymethylating the thiol-enzyme with iodo[2-3H]acetic acid, the label was shown by SDS/PAGE and sequencing analysis to be associated exclusively with the β-chain NH2-terminal residue, indicating conversion of Ser290 to S-carboxymethyl-cysteine. Near-ultraviolet CD spectra showed the conformation of thiol-penicillin acylase to be indistinguishable from that of the native protein but the catalytic activity was less than 0.02% of that of the normal enzyme. The possibility that Ser290 acts as a nucleophile in catalysis is discussed.
Original languageEnglish
Pages (from-to)75-80
Number of pages6
JournalFEBS Journal
Volume197
Issue number1
DOIs
Publication statusPublished - 10 Apr 1991
Externally publishedYes

Fingerprint Dive into the research topics of 'Site-directed chemical conversion of serine to cysteine in penicillin acylase from <i>Escherichia coli</i> ATCC 11105: Effect on conformation and catalytic activity'. Together they form a unique fingerprint.

Cite this