Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

B. J. Jones*, J. J. Ojeda

*Corresponding author for this work

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp 2/sp 3 ratios were calculated both by the deconvolution of the XPS C1s line and by the analysis of the C KLL Auger spectrum. Altering the substrate causes changes in the carbon bonding configuration, evident with the same trend through both analysis methods, although with differing absolute values, related to hydrogen and oxygen content. There is significant variation in the microscale surface texture, exhibited by both average roughness values and size and uniformity of surface asperities. This suggests that alteration to the film surface structure is a factor to be considered in addition to interface adhesion, hardness and elastic modulus in investigating substrates and interlayers for tribological coatings. Examination of a DLC film separately produced on a steel substrate, in comparison with that produced concurrently with a DLC coating on epoxy, shows the possibility of effects on the chemistry of the film through transfer of material from adjacent samples within the plasma deposition, related to heating, outgassing or sputtering processes. The possibility of such contamination has implications in coating parameter design and coating of multiple samples with plasma-enhanced chemical vapour deposition.

Original languageEnglish
Pages (from-to)1187-1192
Number of pages6
JournalSurface and Interface Analysis
Volume44
Issue number8
DOIs
Publication statusPublished - Aug 2012
Externally publishedYes

Fingerprint

Diamond
Plasma enhanced chemical vapor deposition
Surface chemistry
Diamonds
Carbon
textures
Textures
diamonds
vapor deposition
chemistry
carbon
Substrates
Coatings
Steel
coatings
interlayers
X ray photoelectron spectroscopy
Hardness
hardness
Plasma deposition

Cite this

@article{9cd5d424db1c41f5bc9711369aac94ad,
title = "Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition",
abstract = "Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp 2/sp 3 ratios were calculated both by the deconvolution of the XPS C1s line and by the analysis of the C KLL Auger spectrum. Altering the substrate causes changes in the carbon bonding configuration, evident with the same trend through both analysis methods, although with differing absolute values, related to hydrogen and oxygen content. There is significant variation in the microscale surface texture, exhibited by both average roughness values and size and uniformity of surface asperities. This suggests that alteration to the film surface structure is a factor to be considered in addition to interface adhesion, hardness and elastic modulus in investigating substrates and interlayers for tribological coatings. Examination of a DLC film separately produced on a steel substrate, in comparison with that produced concurrently with a DLC coating on epoxy, shows the possibility of effects on the chemistry of the film through transfer of material from adjacent samples within the plasma deposition, related to heating, outgassing or sputtering processes. The possibility of such contamination has implications in coating parameter design and coating of multiple samples with plasma-enhanced chemical vapour deposition.",
author = "Jones, {B. J.} and Ojeda, {J. J.}",
year = "2012",
month = "8",
doi = "10.1002/sia.4871",
language = "English",
volume = "44",
pages = "1187--1192",
journal = "Surface and Interface Analysis",
issn = "0142-2421",
publisher = "John Wiley and Sons Ltd",
number = "8",

}

TY - JOUR

T1 - Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

AU - Jones, B. J.

AU - Ojeda, J. J.

PY - 2012/8

Y1 - 2012/8

N2 - Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp 2/sp 3 ratios were calculated both by the deconvolution of the XPS C1s line and by the analysis of the C KLL Auger spectrum. Altering the substrate causes changes in the carbon bonding configuration, evident with the same trend through both analysis methods, although with differing absolute values, related to hydrogen and oxygen content. There is significant variation in the microscale surface texture, exhibited by both average roughness values and size and uniformity of surface asperities. This suggests that alteration to the film surface structure is a factor to be considered in addition to interface adhesion, hardness and elastic modulus in investigating substrates and interlayers for tribological coatings. Examination of a DLC film separately produced on a steel substrate, in comparison with that produced concurrently with a DLC coating on epoxy, shows the possibility of effects on the chemistry of the film through transfer of material from adjacent samples within the plasma deposition, related to heating, outgassing or sputtering processes. The possibility of such contamination has implications in coating parameter design and coating of multiple samples with plasma-enhanced chemical vapour deposition.

AB - Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp 2/sp 3 ratios were calculated both by the deconvolution of the XPS C1s line and by the analysis of the C KLL Auger spectrum. Altering the substrate causes changes in the carbon bonding configuration, evident with the same trend through both analysis methods, although with differing absolute values, related to hydrogen and oxygen content. There is significant variation in the microscale surface texture, exhibited by both average roughness values and size and uniformity of surface asperities. This suggests that alteration to the film surface structure is a factor to be considered in addition to interface adhesion, hardness and elastic modulus in investigating substrates and interlayers for tribological coatings. Examination of a DLC film separately produced on a steel substrate, in comparison with that produced concurrently with a DLC coating on epoxy, shows the possibility of effects on the chemistry of the film through transfer of material from adjacent samples within the plasma deposition, related to heating, outgassing or sputtering processes. The possibility of such contamination has implications in coating parameter design and coating of multiple samples with plasma-enhanced chemical vapour deposition.

U2 - 10.1002/sia.4871

DO - 10.1002/sia.4871

M3 - Article

AN - SCOPUS:84864471537

VL - 44

SP - 1187

EP - 1192

JO - Surface and Interface Analysis

JF - Surface and Interface Analysis

SN - 0142-2421

IS - 8

ER -