Towards a general theory of biodiversity

Elizaveta Pachepsky, John W. Crawford, James L. Bown, Geoff Squire

Research output: Contribution to journalLetterpeer-review

64 Citations (Scopus)

Abstract

The study of patterns in living diversity is driven by the desire to find the universal rules that underlie the organization of ecosystems. The relative abundance distribution, which characterizes the total number and abundance of species in a community, is arguably the most fundamental measure in ecology. Considerable effort has been expended in striving for a general theory that can explain the form of the distribution. Despite this, a mechanistic understanding of the form in terms of physiological and environmental parameters remains elusive. Recently, it has been proposed that space plays a central role in generating the patterns of diversity. Here we show that an understanding of the observed form of the relative abundance distribution requires a consideration of how individuals pack in time. We present a framework for studying the dynamics of communities which generalizes the prevailing species-based approach to one based on individuals that are characterized by their physiological traits. The observed form of the abundance distribution and its dependence on richness and disturbance are reproduced, and can be understood in terms of the trade-off between time to reproduction and fecundity.
Original languageEnglish
Pages (from-to)923-926
Number of pages4
JournalNature
Volume410
Issue number6831
DOIs
Publication statusPublished - 19 Apr 2001

Fingerprint Dive into the research topics of 'Towards a general theory of biodiversity'. Together they form a unique fingerprint.

Cite this