Integrating the planning of green spaces and sustainable drainage systems

  • Rohit Singh

Student thesis: Doctoral Thesis


In recent times urban flooding has become more frequent and more complex due to the effects of increasing urban areas and climate change. In some established urban areas the existing drainage infrastructure is unable to cope with the volume of surface runoff and flooding events are more frequent, therefore new approaches to create more space for water within developments are required. This research was conceived in that context. It aims to investigate the potential for integrating green space planning with water planning and to develop a framework for the same in order to reduce the risk of flooding.

An extensive literature review was carried out in the areas of urban planning, water planning, planning legislations, and issues related to integrating green space and water planning. The review identified the need for an inclusive framework which could integrate aspects of green space and storm water planning more holistically to achieve greater spatial planning efficiency. To satisfy this need, a conceptual framework was developed which took into consideration the opinions of various stakeholders. The conceptual framework included green spaced planning for SUDS, recreational and storm water indicators and a mechanism for integrated evaluation of SUDS for recreation and storm water management.

The conceptual framework provided a joint approach where both engineers and planners will need to work together for the development of integrated storm water and green space plans. The framework showed processes for both disciplines and also indicates how spatial planning and water planning interfaced so that there was clarity of roles. In order to evaluate integrated plans, an ‘integrated evaluation tool’ was developed which uses indicators from both the areas of green space planning and water planning. The evaluation tool also contained a scoring system which can be used to select storm water management options with more recreational potential. The tool provides a mechanism to balance the requirements of recreation and storm water management so that more holistic solutions can be developed by teams of engineers and planners.

The conceptual framework and the integrated evaluation tool were applied to two case study catchments. Results from the case studies showed the relationship of spatial planning and flooding. It further tested whether recreational aspects could be integrated into storm water planning. A number of drainage options were tested to show the application of the evaluation tool under various scenarios.

This results of the research showed that the conceptual framework was appropriate in both case study areas even though the areas had different patterns of development. It is therefore proposed that the approach has potential for wider application in other geographical areas. Results from the two areas also showed that the integrated approach established in this research could enhance the recreational aspects associated with urban storm water management.

The framework presented in this thesis w ill potentially be of use to a wide range of stakeholders such policy makers, local authorities, water companies, consultants and researchers. It could also be useful in informing the evolution of planning policies and technical guidance associated with water and green space planning.
Date of AwardMar 2012
Original languageEnglish
SponsorsGlasgow City Council
SupervisorChristopher Jefferies (Supervisor) & Rebecca Wade (Supervisor)


  • Storm water management
  • SUDS
  • Urban planning
  • Green space planning
  • Amenity indicators
  • Storm water quantitative indicators

Cite this