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Abstract: 

Measurements in soils have been traditionally used to demonstrate that soil 

architecture is one of the key drivers of soil processes. Major advances in the 

use of X-ray Computed Tomography (CT) afford significant insight into the 

pore geometry of soils, but until recently no experimental techniques were 

available to reproduce this complexity in microcosms. This article describes a 

3D additive manufacturing technology that can print physical structures with 

pore geometries reflecting those of soils. The process enables printing of 

replicated structures, and the printing materials are suitable to study fungal 

growth. This technology is argued to open up a wealth of opportunities for soil 

biological studies. 

 

 

Microcosms have played a central role in the development of ecology, leading 

to model-driven insights into habitat fragmentation, competitive exclusion, 

resource allocation, and succession (Drake et al., 1996). These conceptual 

advances could be relevant to soils, whose complex geometry and 

heterogeneity is widely recognized as the key driver in many ecological 

processes. In soil science, the development of ecological theories is 

nevertheless in its infancy and the discipline still stands to benefit from more 

hypothesis-driven research (Prosser et al, 2007). This requires the level of 
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experimental control afforded by model systems (Jessup et al. 2004). To date, 

introduction of heterogeneity in microcosms has been limited due to the 

difficulty in controlling and replicating the pore geometries of soil at scales 

relevant for microbial processes, and systematic study of the impact of soil 

structure on microbial invasions has been restricted to computer simulation 

studies (e.g., Falconer et al., 2005, 2012). There is therefore a pressing need 

to advance soil microcosms in ways that retain the control of laboratory-based 

studies, along with the heterogeneity encountered in the field (Baveye et al., 

2011).  

Engineers have been utilizing 3D printing or "additive manufacturing” 

for more than a decade. This technology is maturing and printing at small 

spatial scales is now possible even for complex stalactite like structures 

encountered in soil. Heterogeneous structures can be printed with a range of 

materials, including plastics, glass and ceramics. 3D printing technology is on 

the cusp of major exploitation in many areas (Marks, 2011). The latter tend to 

be at large spatial scales (> cm), but exploitation at the micron scale is an 

exciting opportunity, albeit with a few challenges. Here we demonstrate how 

micro X-ray CT imaging, which quantifies soil structure, can be combined with 

3D printing to produce replicated static model microcosms that exhibit the 

physical heterogeneity found in soils. To produce microcosms, soil pore 

geometries can be quantified via X-ray CT or digitally designed to desired 

structures. The digital map is subsequently used in the 3D printing technique 

to produce replicated structures that can be used to explore for example the 

role of physical heterogeneity on fungal spread or transport processes. Soil 

samples including repacked sieved loam and undisturbed samples were 
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scanned at a resolution of 29.3 um, with a Nikon HMX 225 X-ray micro-

tomography system (Pajor et al., 2010). If required, these structures can 

subsequently be printed in different sizes to scale the porous medium (Fig 1). 

From the voxel data, the surface of pore network was extracted. The result of 

this process is a surface representation of the sample, with stereo lithography 

file format (STL). The polygonal mesh consists of up to 10.5 million triangles. 

This retains the key characteristics of the pore volume but does introduce 

some smoothening of the surface walls compared to real soil. An EOS P390 

polymeric Laser Sintering machine (Additive Manufacturing Research Group, 

Loughborough University) was used to print the 3D structures in Nylon 12. 

The P390 has a heated chamber which is filled with a thin layer (0.1mm) of 

polymeric powdered materials (typically semi-crystalline polymers such as 

Nylon 12). A 50W CO
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2 Laser is used to selectively melt (print) the polymeric 

powder according to the digital map. The powder offers a supporting surface 

during the printing process enabling so called stalactite-like structures. The 

powder is removed from the pore space after the printing process. Other 

printers use two plastics, one of which (representing the pore space) is 

dissolved after the printing process. Nylon 12, used in this study, is a resistant 

material enabling autoclaving and re-use of the samples, is resistant to most 

chemicals and has a low water adsorption. Up to two hundred replicated soil-

like microcosms, as in Fig.1, can be printed overnight at very low cost 

covering the price of polymers only. The final stage is removal of the unprinted 

powder from internal cavities using a variety of methods such as vibration, 

ultrasonication, vacuuming, boiling, brushing and rinsing. This currently 
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restricts the printing process to structures with well and fully connected pore 

volumes. 

Replicate printed structures need be similar and tolerated by 

microorganisms. To ascertain that these conditions are met, ten Nylon-12 

model systems were printed from the same structure. The Nylon 12 structures 

were then rescanned as above and data were converted to binarized images 

in ImageJ v 43 using Li’s method. The surface area of the pore-solid interface 

and the pore volume for each replicate were determined. The average pore 

volume fraction, which is the total volume within which all microbial and 

physical processes occur, was 0.66 and highly reproducible with a small 

standard error (SE) of 0.0064. Similarly the volume of the solid phase (Nylon 

12) was highly reproducible for each printed structure with an average of 

10,985 mm3 (SE = 223). The average solid-air interface of the structures was 

38,320 mm2 (SE = 1301). All standard errors were within 3% of the mean 

values showing a highly successful reproduction for complex geometries.  

To assess whether the printed microcosms could host fungi, we 

introduced 3 poppy seeds that were previously colonised by Rhizoctonia 

solani into the 3D printed soil and incubated it at 23 0C for 3 days. The 

colonisation by this fungus was similar to that previously observed in bulk-soil 

(Harris et al., 2003) and in cracks (Otten et al., 2004), with preferential spread 

within larger pores and fungal hyphae bridging air gaps (Fig 2). This indicates 

that the soil-derived model systems are suited to study the effect of physical 

heterogeneity on fungal growth and species interactions (Fig 2). 

 In conclusion, 3D printing makes it possible to produce replicable static 

model systems possessing some of the physical complexity of soils. The 
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current example is focused on relatively large pores, with the original structure 

scaled up three times to ensure all powder could be removed from the 

intricate pore network, and to produce pores with diameters in which we can 

study fungal invasion. Future work will address the limits of 3D printing 

technology in accurately replicating soil samples with more complicated 

geometries (lower porosities, high tortuosity) from which powder removal is a 

key challenge and to test the microscopic characteristics of the surface. 

Nevertheless, advancements can be made to comprehend interactions whilst 

explicitly considering structural heterogeneity, something hitherto not possible 

with alternative methods. Finally alternative polymers can be used to alter 

hydrophobicity of surface properties and determine its effect on hydrological 

properties of the structure.  Many printers are available at prices of a few 

thousand pounds. Although the cheaper versions may not be able to cope 

with the complexity of soil structures, it is likely that rapid advances will make 

this an accessible technology in the near future. 

 

Acknowledgement: We thank Dr. Veronica Morales for valuable discussion 
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Fig 1 Soil-like structures demonstrating the range of microcosms that can be 

reproduced with 3D printing from a digital map. Printed structures from 

repacked sieved loamy sand (scaled to (A) 1.8 and (B) 2.7 cm wide), (C) the 

same sample but now with the pore space printed, and (D) an example of 

printed undisturbed soil sample with macro-pores. 
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Figure 2. X-ray CT permits the visualization of the solid volume (a) and pore 

volume (b) at a spatial resolution of 30 µm. In the 3D printed Nylon 12 replica 

of the soil structure (c), fungal hyphae are easily visible in a close-up view (d; 

hypha indicated by an arrow).  

 

 


