Intercropped barley for brewing and distilling

Kirsty Black  
Greame Walker  
Philip White  
Geoff Squire  
Pietro Iannetta

This is the Accepted Manuscript of the conference paper published in the Proceedings of the Worldwide Distilled Spirits conference 2017: local roots; global reach: delivering distilling expertise to the world

Introduction

Of the Scottish arable area (547,500 hectares (ha) in 2015), 56 % was sown with barley, of which 83 % (256,000 ha) was spring barley (Scottish Government, 2016a). From this area, around 1.9 million tonnes (mt) of barley is harvested and the yield from spring barley varieties for malting to serve brewing and distilling industries account for 35% of production, the remainder being routed to animal feed markets (Scottish Government, 2016a). The alcohol industry is very important economically generating over £996 million in duty (Scottish Government, 2016b). The whisky industry alone, when considering both direct and induced effects, contributes £4.7 billion to the economy (SWA, 2017).

To support the necessary yields of this important crop an average of around 110 kg/ha of inorganic nitrogen fertiliser (usually as ammonium nitrate, AN) is applied (DEFRA, 2016) with an associated carbon footprint, expressed as carbon dioxide equivalents (CO2e), of 3.06 kg/kg AN (Fertilizers Europe, 2014). The nitrogen requirement could be provided by legume-supported intercropping (Brooker, Bennett, Cong, Daniell, George, Hallett, Hawes, Iannetta, Jones, Karley, Li, McKenzie, Pakeman, Paterson, Schöb, Shen, Squire, Watson, Zhang, Zhang, Zhang and White, 2015; Iannetta, Young, Bachinger, Bergkvist, Lopez-Bellido, Doltra, Monti, Pappa, Reckling, Topp, Walker, Rees, Watson, James, Squire and Begg, 2016): that is, two crops species are sown in the same field at the same time, and the nitrogen requirement of the cereal is facilitated by biological fixed nitrogen delivered from the legume companion. If achievable, for the spring barley area of Scotland, the financial and CO2e savings would be around £6.8 million (for 256k ha of spring barley using 110 kg/hectare of fertiliser costing £241.5/tonne, as per the average January 2017 34.5 % Ammonium Nitrate price; ADHB, 2017) and 86 kt CO2e, respectively (at 3.06 kg CO2e/kg AN, Fertilizers Europe, 2014). The potential of an alternative legume supported cropping system assessed the yield and yield qualities of barley from a 50:50 pea-supported intercrop to serve the brewing and distilling industries.

Materials and methods

Field experiments were conducted at the James Hutton Institute, Invergowrie in 2015. Each treatment was replicated 6 times in a randomised split block design. Individual plots were 1.25 m × 4.5 m. Five barley and five pea cultivars were grown as monocrops (full, 100 % of recommended seeding rate) and in combinations (50:50 seeding rate). A sixth barley treatment was formed using all five cultivars at a 10 % seeding rate per cultivar. The same was done for the pea cultivars and they were sown, combined, as an intercrop. All plots received pre-emergence weed control but no fertiliser, pesticide or later weed control. Desiccant was applied at maturity of the barley (glyphosate). During growth, data was collected on pea establishment rate and number of barley tillers and statistical analysis employed ANOVA to test for statistical differences (at P ≤ 0.05). The Land Equivalent Ratio (LER), defined as the area needed under sole cropping to produce the same amount as 1 ha of intercropping, can be calculated using the equation: [Intercrop 1 / Monocrop 1] + [Intercrop 2 / Monocrop 2].

Results and discussion

Average tiller production, the number of barley stems produced per seed sown, was significantly higher in intercrops compared to monocrops (Figure...
1) with 1.9 and 1.1 tillers per seed sown, respectively. More tillers lead to more grain heads and higher yields - probably a consequence of a greater volume of space available from reduced sowing density, and other facilitative processes associated with intercropping. Intercropped barley yields (Figure 2) were not significantly different to that of the monocrop (without fertiliser yields) at around 4.5 t/ha, depending on cultivar. This is only ca. 20% lower than the 10-year barley yield average (to 2016), for Scotland at 5.7 t/ha (Scottish Government, 2016c).

Intercropped barley yields (Figure 2) were not different from reduced sowing density, and other facilitative processes associated with intercropping. More tillers lead to more grain heads and higher yields - probably a consequence of a greater volume of space available from reduced sowing density, and other facilitative processes associated with intercropping. Intercropped barley yields (Figure 2) were not significantly different to that of the monocrop (without fertiliser yields) at around 4.5 t/ha, depending on cultivar. This is only ca. 20% lower than the 10-year barley yield average (to 2016), for Scotland at 5.7 t/ha (Scottish Government, 2016c).

Intercropping can also aim to optimise the relative seeding rates and agronomy to match or exceed the yields of barley (at 100 % seeding rate), intercropping barley at 50 % rate gave comparable yields. In addition, the above 1 (15%) LER was a function of the pea yield. This potential could be increased further with better protection from pigeons, though whether this compromises barley yield, or yield qualities remains to be tested. Future work on the efficacy of barley-pea intercropping will assess the intercropped barley grains for their malting and distilling capacity, and a full financial cost benefit analysis. Field trails in 2016 also aim to optimise the relative seeding rates and agronomy to match or exceed the yields of barley fertilised with inorganic N-fertiliser.

Acknowledgements

This research is supported by a joint PhD studentship between Aberystwyth University and The James Hutton Institute. The James Hutton Institute is supported by the Scottish Government. The research reported here is also supported by the projects, ‘TRansition paths to sustainable legume-based systems in Europe’ (TRUE, www.true-project.eu), and ‘Designing innovative plant teams for ecosystem resilience and agricultural sustainability’ (DIVERsity, www.plant-teams.eu) projects, both of which are funded by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreements 727973 and 727284, respectively.

Special thanks are also conveyed to The Scottish Section of the IBD for financial support.

References


