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INEQUALITIES AND ASYMPTOTIC EXPANSIONS RELATED TO THE
VOLUME OF THE UNIT BALL IN R”

CHAO-PING CHEN* AND RICHARD B. PARIS

ABSTRACT. Let Q, = 7r”/2/F(% +1) (n € N) denote the volume of the unit ball in R™. In this
paper, we present asymptotic expansions and inequalities related to 2, and the quantities:

Qn—1 Qp and Q'}L/n
Qn ' Qp—1+ Qn+1 Qiz/-‘—(?+1) ’

1. INTRODUCTION

In the recent past, several researchers have established interesting properties of the volume
), of the unit ball in R”,

7.‘_71/2

L3 +1)
including monotonicity properties, inequalities and asymptotic expansions.

Bohm and Hertel [7, p. 264] pointed out that the sequence {Q"}n>1 is not monotonic for
n > 1. Indeed, we have -

Q, = neN:={1,2,...},

Q< Qpyp if 1<n<4 and Q> Q1 if n>5.

Anderson et al. [5] showed that {Q}/ n}n>1 is monotonically decreasing to zero, while Anderson
and Qiu [4] proved that the sequence {Q}Z(nln n) }n>2 decreases to e~1/2. Guo and Qi [14] proved
that the sequence {Q}/ (n ln")}n>2 is logarithmical_ly convex. Klain and Rota [16] proved that
the sequence {nQn/Qn,l}n>1 is increasing.

Diverse sharp inequalities for the volume of the unit ball in R™ have been established [2, 3,6,
8,11,19,21-24,28]. For example, Alzer [2] proved that for n € N,

a, QM) < q, < bt (1.1)
In+as Qn_i [n + bo
< 1.2
27 < Q, — o (12)
1\ 02 1\"
14 = < n___ 14+ = 1.3
( * n) T Q1 Qg < ( * n) ’ 13
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with the best possible constants

P
= o= L2 by = /e = 1.6487. ..,
1 T
=2, by=1 _1=05707...
az 23 2 2 )
1 1
a3=2— % _03485..., by—=~-
In2

5
The double inequality (1.2) refines a result due to Borgwardt [8, p. 253], who proved (1.2)
with ag = 0 and by = 1. Mortici [22, Theorem 3] obtained the following inequality:

In+i Q. n+ 3
< <
2w O, +

2 167n’ nel,

(1.4)
which improves the right-hand side of (1.2). Ban and Chen [6, Theorem 3.1] improved (1.4) and
obtained the following double inequality:

n+ 3 1 Q1 n+; 1

< N 1.5
\/ 27 +167r(n+191)_ Qn <\/ 27 +167r(n+192)’ R (15)

with best possible constants
13 —4m 1
Merkle [21] improved the left-hand side of (1.3) and obtained the following result:
1 \"? 02
< —nn .
(1 + p— 1> <9 neN

) 1.6
n—lQn+l ( )
Chen and Lin [11, Theorem 3.1] developed (1.6) to produce the following symmetric double
inequality:

2

1\ 02 1\’
1+ ——) <—" <(14——) , neN,
n+1 Q

nflﬂnJrl

1.7
n+1 (17)
with the best possible constants
1 2In2 —In7w
== =—F7=0. 13...
a=s, 3 —In2 0.5957713. ..,
Ban and Chen [6, Theorem 3.2] proved, for n € N,
ot ) e B (1
n+6; T Q1 Q4 n+ 02 ’ .
with best possible constants
2m? — 16 1
0y == =0.60994576... and 0y = -.
16 — w2

2
Alzer [3] continued the work on this subject and offered new inequalities. For example, Alzer [3,
Theorem 4] proved that for n > 2,

*

\/H - anl +Qn+1 \/ﬁ’

(1.9)
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with best possible constants
N 32
« =
6+ 4m
while Chen and Lin [11, Theorem 3.3] proved that for n € N,

[ 27 Q, [ 2w
< < 1.10
n+a* anl +Qn+1 n‘f’b*, ( )

with best possible constants
2
o m(lt)
2
Chen and Lin [11, Theorem 3.4] showed that for n € N,

e (5 =0 G (5 o

with best possible constants

=0.7178... and B* = V271 = 2.5066. ..,

1
—1=2594353..., b"= 5—!—471':13.06637....

e
0=—-—1=0.3591409..., ¢J=-.
5 0.3591409. .., 3

Recently, Mortici [24] constructed asymptotic series associated with some expressions involving
the volume of the n-dimensional unit ball. New refinements and improvements of some old and
recent inequalities for €, are also presented. Lu and Zhang [19] established a general continued
fraction approximation for the nth root of the volume of the unit n-dimensional ball, and then
obtained related inequalities.

In this paper, we present asymptotic expansions and inequalities related to §2,, and the quan-
tities:

Qn—l Qn QTl'L/n
, and —1" .
Q. Qp_1 + Qn+1 leléfiL+1)

The numerical values given in this paper have been calculated via the computer program MAPLE
17.

2. LEMMAS
The following lemmas are required in our present investigation.

Lemma 2.1 ( [10, Theorem 5]). Let
Az) = Z apx” ", T — 00
n=1

be an asymptotical expansion. Then the composition exp(A(x)) has the asymptotic expansion
given by

exp(A(z)) = anx_", T — 00,
n=0
where

1 n
bo=1, byn=-3 kagby_r, n>1.
0 ) nkz_:l ag k n
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Lemma 2.2 ( [1, Theorem 8|). For every m € Ny, the function
Ry(z)=(-1)" |InT(x +1) — Inx+2z—Inv2r ZL
, 2j§(2j — 1)a2i—1
(2.1)

is completely monotonic on (0,00), where here and elsewhere in this paper an empty sum is
understood to be zero. Here B,, (n € Ny := NU{0}) are the Bernoulli numbers defined by the
following generating function:

t =
o= ZBnH, |t| < 2. (2.2)
n=0

In 2006, Koumandos [17] presented a simpler proof of complete monotonicity of the functions
R, (x), which was further strengthened by Koumandos and Pedersen in [18, Theorem 2.1].

Recall that a function f is said to be completely monotonic on an interval I if it has derivatives
of all orders on I and satisfies the following inequality:

(=1)"f™(x) >0 for zel and neN,. (2.3)

Dubourdieu [13, p. 98] pointed out that, if a non-constant function f is completely monotonic
on I = (a,00), then strict inequality holds true in (2.3); see also [15] for a simpler proof of this
result.

The gamma function I'(z) is one of the most important functions in mathematical analysis
and has applications in many diverse areas. The logarithmic derivative of I'(x), denoted by
P(z) =T'(z)/T(x), is called the psi (or digamma) function. It is known that

Pz+1)=2l(z) and Y(z+1)=9(z)+ %

From the inequality R,,(z) > 0 for > 0 and m € Ny, we obtain that for z > 0 and n € Ny,
2n

2n+1
By ( T(z+1) ) Ba;
j=1 2j(2j - 1)x2j71 \/%(.r/e)l ; 25(25 — 1)x2J71 ( )

In particular, the choice n = 1 in (2.4) yields

1 1 1 1 1

zlnz— x+ﬁi360 7 <Inl(z+1)-Inv2rz < xln:cfmqtﬁferm, x> 0.
(2.5)
From the inequality R}, (z) < 0 for > 0 and m € Ny, we obtain that for > 0 and n € Ny,

2n 2n+1

ng 1 ng

Z 5ja% <lnz+ % P(x+1) < Z 2ja% (2.6)

Jj=1 j=1

In particular, the choice n =1 in (2.6) yields
1 1 1 1 1 1

—_— — —— — = 1 - . 2.7
22 12000 < TVt < o T et Tasaes 070 @7)

Let Q, = 7%/2/T(£ + 1). We find that (2.1) can be written as

2rx

Rp(z) = (=1)™ |In (1 (7;6)96> —In €y, — Ji} M# . (2.8)
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From the inequality R,,(z) > 0 for x > 0 and m € Ny, we then obtain

1 (ﬂ'e)x 2§1 Bo; <0
— | — X — — . T
Vame Vo) TP\ T & giei - 1aBT ) TP

2m
1 mTe\?T Bsy;
— - —_ | . 2.9
< Ve ( x ) P ( ; 2i(2i — 1)332%—1) (29)
Replacement of 2 by n/2 in (2.9) then produces the following double inequality for €,,:
1 (2me ”/ 2§1 2By ),
vnm \ n ]143 (25 — 1)n2—1 "
n/2 2m

1 2me 22 ]ng
2.10
<\/mr(n) 2432]—171231 (2.10)

for n € N and m € Nj.
Mortici [23, Theorem 2] has given the following double inequality:

1 [2me\"? L, 8 8 18\ o
A P\ T 60 T 45nd T 315m5 ' 10507 297n° n

1 (2me\"? 11 8 8
— (= e , N, (211
= Vnr ( n ) P ( 6n " 1503 3155 | 105n7> nel, (21

which can be seen to follow from (2.10) when m = 2.

Lemma 2.3 (see [12, Corollary 1]). Let m € No. Then for x > 0,

2m
1 By; I'(z+1)
vae (3 (1= ) st | < her 1)

=1 2
2m-+1
1 ng
j=1
In particular the choice m = 1 in (2.12) yields
1 1 Mz+1)\ 1 1 1 1
1 — <1 <ot —— — k>0 (213
Mg T 102 S (F(m—f— ;)) Pt 5~ 020 T gaoesr 70 (219)

3. ASYMPTOTICS AND INEQUALITIES FOR {1,
The asymptotic expansion of §2,, as n — oo is given by

q 2?1 1 (2me n/2i2k7k
" oon T(%) Var\n nk

k=0
_ 1 feme\"Pp 1 L] 139 571 163879
_\/TL’JT

6n 7202 T 648007  155520n% 653184017
5246819 534703531 }

117573120015 + 705438720017
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which follows from the well-known result
73— &
F nyk (z =00, |argz| <m);

see, for example, [26, p. 32], [27, p. 70]. The v, denote the Stirling coefficients defined by the
recurrence (with do = 1)

(=2)*T'(k + 3) n+1)d,_ d d,
S A P d, = - J >1).
Vi NG 2%k w2\ n ;]+1 (n>1)
The first few values of 7, are
a1 1 139 5T 163879
W= MT Ty T oge BT Ersa00 T T 24883200 0T T 209018880°
5246819 534703531
767 75246796800° T 902961561600° "
The expansion (3.1) was also given by Mortici in [24, Theorem 1].
Motivated by (3.1) we establish the following theorem.
Theorem 3.1. Let!
QQI
V(r)= ——7 (3.2)
7= (5)
Then, for x > 1/2, we have
5 7
S h < V(z) <>y (3.3)
k=0 k=0
and
5
) < Z ez T (3.4)

k=1

Proof. Here we only prove the left-hand side of (3.3) as the proof of the right-hand side is
analogous. The inequality (2.9) can be written as

2m+1 2
exp | — i: A <V(r)<exp | — zm: L . (3.5)
2 2j(2j — Da¥! 2 2j(2j — 1)a®

The choice m =1 on the left-hand side of (3.5) then yields,

e N + L <V(z)
P\ T 122 T 36028 126025 '

In order prove the left-hand side of (3.3), it suffices to show for x > 1/2 that
5
1 1 1
—k
< ——t . 3.6
;Wc P ( 122 36028 1260x5> (36)

Hn terms of the scaled gamma function I'*(z) = (ezwéfl/\/QTr)F(w), the function V(z) = 1/T*(z). Conse-
quently, the double inequality (3.3) supplies bounds on 1/T"*(z).
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The inequality (3.6) is obtained by considering the function P(x) defined, for z > 1/2, by

5
1 1 1
P =1 -k _ (- 4 _ - = ).
(@) ng)w ( 122 ' 3602 1260:c5>

Differentiation yields

P'(x) Palw =

2)
T

where

Py(x) = 98855357 + 7633461362 + 247285113622 + 34597436162 4 1762931184z,

Ps(z) = 5486171 4 57666084z + 23679532827 + 4884364802° + 5051289602
+ 2090188802°.

Thus, we have P’(x) > 0 for > 1/2. So, P(z) is strictly increasing for z > 1/2, and we have
1
. _ > 1
P(z) < tli}rrolO P(t)=0 for x> 5
Hence, (3.6) holds for z > 1/2.
Since the function R,,(z) defined by (2.8) is completely monotonic on (0,00), we have, for
x > 0 and m € Ny,

2m—+1

V! moop.
R (z) = (—1)™*! (=) _ Z 2j:c2;j <0, sothat V'(z)<V(2) Z

BQj
2jx2i’

j=1
Using the right-hand side of (3.3), we obtain that
3

V(@) < V()Y

Jj=1

< ( 1 1 139 571 163879

j=1

BQj
2jx%

1— — - — —
120 28827 ' 51840z° 243832001 20001888020

5246819 534703531 1 1 1
7524679680026 9029615616003:7) (123:2 T 1200 T 252x6>

1 1 139 571 163879
= 1222 T T4dz® 172802 T 62208025 | 4180377620

+ R(x), (3.7)
where

R(x) =

1 {25799409925 215497370169 (x 1)

© 2275463135232000213 8 + 2 2

2 3
1 1
+ 627676689198 (x - 2) + 1958303670708 (m — 2)

4 5
1 1
+ 3296254174710 (w - 2) + 2807022408120 (x — 2)

1\ 6
-+ 951982839360 (1: - 2) } <0 for z>

N |

Hence, upon identifying the coefficients of 7%~1(1 < k < 5) in (3.7) as (—k)7x, we see that (3.4)
holds for « > 1/2. This completes the proof. O
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Remark 3.1. Noting that

©24883202% 2090188805 + 752467968005 + 90296156160027

117938613 + 800398812 (z — 1) +1018764000(z — 2)? + 207204480(z — 3)* “0
n 9029615616007

holds for x > 1/2, we obtain from the right-hand side of (3.3) that

1 1 139 1
v 1— — > - 38
@) <1- o0+ s T 580003 “ 232 (3.8)

Remark 3.2. Replacement of x by n/2 in (3.3) yields the following double inequality for Q,,:

1 @”/Q g 1189 5L 163879 Y
Jnr \n 6n | 72n2 | 6480m3  155520mF  6531840n° "

_ 2 @”/2 Lol 1o, 139 571 163879
Jor \n 6n | 72n2 ' 6480n3  155520m%  6531840n5

5246819 534703531 )

27: _k 571 163879 5246819 534703531
VX =

3.9
1175731200n5 + 705438720017 (39)

From the right-hand side of (1.11) it follows that
n/2
1 2
Qe —— (m) , n — oo. (3.10)
w(n + %) n

Theorem 3.2 develops the approximation formula (3.10) to produce a complete asymptotic ex-
pansion.

Theorem 3.2. The following asymptotic expansion holds:

1 ome\ /2 = aj
Qp~v —| — exp E -1, n — 0o, (3.11)
1 n ;
7T(n + 3) j=2
where the coefficients a; (j > 2) are given by

(17" 2By

;= - 3.12
YT 958 G+) (3.12)
and B; denote the Bernoulli numbers.
Proof. Noting that Qo, = 7% /T'(x + 1), we find that
1 oo
zlne — x4+ In(vV2rz) —InT(x 4+ 1) + 3 In (1 + > ~ Z a] (3.13)
Jj=
as ¢ — 00, where a; (j > 2) are real numbers to be determined.
Stirling’s series for the gamma function is given (see [25, p. 140]) by
InT(z +1) ~zlnz — z + In(v2rz —I—Z Bj T — 00. (3.14)

+1x3
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The Maclaurin expansion of In(1 + ¢) with ¢t = 1/(6z) gives

1 - , 1
In(14+—)=) (-1)7'———. 3.15
n< +6:c> ;( ) j-69ad ( )
Substitution of (3.14) and (3.15) into (3.13) yields
= [(-1)"t B 1 el
Z(( V' Bin >'NZ%’” (3.16)
= 2j -6 jG+1)) ad = 27 xd

Equating coefficients of equal powers of z in (3.16) we obtain (3.12). This completes the proof. O

From (3.11), we find the following explicit asymptotic expansion:

N 1 @"/26_1+23_1_85_1
n P\ 73602 T 810n%  648n% 34025 874816

m(n+3) n
1667 1 1679605 1
- — — + - (3.17)
21870n7  104976n8  3897234n°  1180980n10
By Lemma 2.1, we then obtain the following asymptotic expansion:
n/2 o
1 2 b;
S PR S (m) e (3.18)
(n+ %) n ="
where the coefficients b; are given by
1 J
bo=1, bj==> kagbj , j>1, (3.19)
J =
and a; are given in (3.12). This produces the expansion
1 2me \ "/ 1 23 1 5261
o ~ L\ n L7 3602 T 810n®  86dnt 20412005
7T(’I’L + g)
6889 125549
— e p 3.20
2099520018 + 1632960n7 } ( )
The expansion in (3.20) motivated us to establish the following double inequality for €,,.
Theorem 3.3. Forn € N,
1 %"/21_1+23_1_5261 _0
w(n+1) n 36n?2  810n3 864n*  204120nm° "
n/2
1 2me 1 23
< — — 1-—+—=. 3.21
( n ) ( 36n2 * 810n3> (3:21)

m(n+ %)
Proof. 1t suffices to show that

F(z)>0 and f(z)<0 for x>

)

N =
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where
1 1
F(z) =zlnz —z +In(v27rz) —InT(z+ 1) + 51n (1 + 6>
x
1 23 1 5261
—In(1- + — _
36(2x)2 © 810(2x)®  864(2x)*  204120(22)°
and

fz) =zl — 2+ In(v2rz) — InD(z + 1) + %m (1+ 61z>

—In{1- L + 25
36(2z)2  810(2x)3 ) °
Differentiating f(z) and applying the left-hand side of (2.7), we obtain that for > 1/2,

648023 — 693z — 115 + 10802
 2x(6x + 1)(648023 — 452 + 23)
LS S 648023 — 693z — 115 4 10802

1222 12024 2x(6z + 1)(648023 — 45z 4 23)

135023 4 50022 — 93z — 23

~ 12024 (62 + 1)(648023 — 452 + 23)

F(@) =Tz + o — g+ 1)

> 0.

Hence, f(x) is strictly increasing for > 1/2, and we have

N |

fz) < lim f(t)=0 for x>
t—o0
Differentiating F'(x) and applying the right-hand side of (2.7), we obtain that for x > 1/2,

F'(z) =Inz + % —p(z+1)

3(43545602° — 46569623 — 6216022 + 2126452 + 31566 + 72576024
© 22(6z + 1)(1306368025 — 9072023 + 4636822 — 945z — 10522)
1 1 1
S 1227 12027 | 25229
3(43545602° — 46569623 — 6216022 + 212645z + 31566 + 72576024
© 2z(67 + 1)(1306368025 — 9072023 + 4636872 — 945z — 10522)
B Ps(x — %)
T 252025(62 + 1)Qs(x — 1)’

where
9402445 29999799
Ps(z) = T x + 1489765222 + 28984704z + 23697723z 4+ 60760982°,
794995 ) 5 A 5
Qs(z) = + 4059783z + 1623988822 + 325684802° + 326592002 + 130636802°.

Hence, F'(z) < 0 for > 1/2. So, F(z) is strictly decreasing for > 1/2, and we have

1
F(z) > lim f(¢t)=0 for ng.

t—o0

This completes the proof. O
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Mortici [24, Theorem 3] improved (1.11) and obtained the following double inequality, for
every integer n > 3 on the left-hand side and n > 1 on the right-hand side:

) n/2 2 n/2
(2me/n) <Q, < (2me/n) , (3.22)
1 1 1 1 1
V(3 + 5~ sibie) Vr(n+ 3+ 1 — st — o)
This last inequality implies
2 n/2
Q, = (2me/n) . (3.23)
oot b4 ok - s O ()
If we now define v,, by the equality
n/2
1 2
Q= (m) : (3.24)
m(n+wv,) \ 1
we find v,, = 6 (n/2), where
T(z+1) )2
0(x) =2x —_— | —1;. 3.25
(@) {(\/QWx(x/e)a” (3:89)
Theorem 3.4 presents the asymptotic expansion and inequality for 6(z).
Theorem 3.4. (i) The function 6(x) has the following asymptotic expansion:
0(z) ~ ot T — 00, (3.26)
3=0
with the coefficients c; given by
cj = 2/\j+1, 7 € Np, (327)
where
1<~ 2B
Xo=1, )\ fz ’““ XNk, jeN. (3.28)
J =
Namely,
0(z) 1 n L _ 31 _ 139 n 9871 n 324179 _ 8225671
3 36x 3240x2  77760x% = 3265920x* = 587865600x°  3527193600x°
_ 69685339 n 1674981058019 n 24279707153761 _ (3.20)
1693052928007 = 502836719616000x8 = 422382844477440002° T
(if) For x > 0 and m € Ny,
2m 2m-+1
B2 i 32 .
2 — | -1 0 2 —
x < exp ; T2j = 1)a < 0(z) < 2z { exp ; 727 = 1)z
(3.30)
Proof. Tt follows from [9, (3.6)] that
D(z+1) )2 ad L
i S T A T 3.31
(\/27rx (z/e)” Z ’ (3:31)
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with the coefficients A; given by

1<~ 2B
Xo = ;Z e
=1

Combination of (3.25) and (3.31) then gives (3.26).
Write (2.4) as

2m 2 2m+1
Ba; ( T(z+1) ) By,
; 325 — a2~ V2rx(x/e)® ; j(2j — 1)a2i—1

Combination of (3.25) and (3.32) then gives (3.30). This completes the proof.

Corollary 3.1. (i) The sequence v, = 0(n/2) has the following asymptotic expansion:

oo

d.
Uy, ~ E —;, n — 0o,
n
Jj=0

with the coefficients d; given by
dj =2\, jeN,
where \; are given in (3.28). Namely,

ool 131 139 9871 324179 825071
"3 T 18n 810n2 972007 ' 204120n% ' 18370800n°  55112400n°
69685339 1674981058019 24279707153761

~ 1322697600n7 | 1064205936000° | 824966403120001°
(ii) For n € N and m € Ny, we have

2m

22j71B2j =~ 22j71B2]’
n exp = — | <n+v, <nexp —
; 325 = Dn2—1 ; 3(2j = Dn2—1
It follows from (3.24) and (3.33) that
0, ~ (2me/n)"/?
7r(n+ > Z—’J)
3=0

which develops (3.23) to produce a complete asymptotic expansion.
From (3.24) and (3.35) we see that for n € N and m € N,

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(2me/n)""? ca - (2me/n)"" |
™ exp <2;”§1 m) TN exp Ci m)
In particular, the choice m = 1 on the left-hand side and m = 2 on the right-hand side yields
(2me/n)"/ ca - (2e/n)™/?
Jmew (- st otie) e (5 - e+ e — i)

for n € N.
The inequalities (3.38) are sharper than the inequalities (3.22) for n > 4.
Based on the formula (3.1) we now establish a sharp inequality for Q,,.
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Theorem 3.5. Forn € N, we have

1 (2me\"? 1 1 (2re\"? 1
— (= 1- <Qp<— (2 1- (3.39)
vnr \n 6n +p nw\ n 6n +q
with the best possible constants
1 6v2—5
p=- and q= 6V2=5VE _ | hans6a22. (3.40)
2 Ve- V2

Proof. If we write (3.39) as

-1

Qy,
P <Tn=4gq, o= \1=-—F""7 6n,
Vv nm ( n )
we find that
6 -5 1
T = u and lim z, = =. (3.41)
\[_ \/i n— o0 2

The limit in (3.41) is obtained by using the asymptotic expansion (3.1).

In order prove Theorem 3.5, it suffices to show that the sequence {x,,} is strictly decreasing for
n > 1. The monotonicity property of {z,} is obtained by considering the function U(z) defined
by

1

1-V(x)
where V() is given in (3.2). Differentiating U(x) and applying (3.4) and (3.8), we obtain that
for x > 2,

—(1=V(@)*U'(z) = 12(1 = V(2))* = V()

1 1 139 \?
> 12 -
122 28822 5184023
/11139 N 571 N 163879
1222 14423  17280x% ' 62208025 ' 4180377626
19066289 + 33264000(z — 2) + 8860320(x — 2)?
N 313528320026

Hence, U(z) is strictly decreasing for x > 2. We then obtain that the sequence {z,} = {U(n/2)}
is strictly decreasing for n > 4.
Direct computation yields

r1 =1.030563..., z2=0.843071... 23 =0.748041... x4 =0.692684....

U(z) = — 12z,

> 0.

Consequently, the sequence {z,, } is strictly decreasing for all n > 1. This completes the proof. O

4. ASYMPTOTICS AND INEQUALITIES FOR " L AND

Qy
Qp 14+ 41

It is easy to see that

Q1 r(%+1) Q, _ Va(n+ 1)L (5 +3) (4.1)
Q VAl + 1y Q14+ Q1 (n+14+2mT(5+1) '
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The asymptotic expansion of these two ratios follows immediately from the well-known expansion
for the ratio of two gamma functions [25, p. 141]

I'(z+a) b S (@ = b\ (b1 —a
mwz b};}( i >B,(f )(a)z (z > 00, |argz|<m),

where B,(CV) (x) denote the generalized Bernoulli polynomials defined by

2 e
(et_1> e't:ZB,(C)(x)y, It| < 2m. (4.2)
k=0 ’

Hence we obtain the expansions

Qn—l n > 1/2 (3/2) 2 k
= B D=
Q, QWZ( k ) o) n
k=0
n

_ [ 1 N 15 2 N 399 N 869
“Vor dn  32n2  128n3  2048n4  8192n5  65536n
39325 334477 }

262144n7 838860818

Qn N n+1 QIi —1/2 B(l/Q)(l) z k
Q1+ Q1 n+l1+27V n =\ k k 27\ n

_omel fmfo1 15 21 309
T n41+427V n dn  32n2  128n3  2048nt  8192n° '

(4.4)

(4.3)

and

Formula (4.3) was presented by Mortici in [24, Theorem 8].
Upper and lower bounds for the ratio Q,_1/, can be obtained by replacement of = by n/2
in (2.12) to find

2m : 2m—+1 .
n (22] — 1)sz Q1 n (22] - 1)32j
2 : i Bl e’ N YOS
2n P | 2 252 a1 ) <0, Va2 &P ; 52—t | 49

j=1

Mortici [24, Theorem 7] established the following inequality:

n S N 17\ _ Qs
oL _
o7 TP\ 4 T 24 T 2005 11207 Q,
n 11 1 17 31
D exp [ — — - N. (46
S\ 27 P (4n 24 T 20m5  Tion7 36n9) o nE (46)

We observe that the choice m = 2 in (4.5) yields (4.6).
Based on (4.3), Mortici [24, Theorem 9] established the following inequality:

n ( 1 1 ) 21 399 ) Q1

27\ In T 3202 T 12803 204807 T 810205 Q,

S A I I U R I . . neN.  (4.7)
2r\" " dn " 3207 1280°  2048n% ' 819205 ' 6553605 ) -

Remark 4.1. The left-hand side of (4.6) is sharper than the left-hand side of (4.7) for n > 10.
The right-hand side of (4.6) is sharper than the right-hand side of (4.7) for n > 3.
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Replacement of = by n/2 in (2.12) yields
2m 1
2 (227 — 1) By, I(
\/;eXp _; 572 — D21 | = T
for n € N and m € Ny. We then find form (4.1) and (4.8) that, for n € N and m € Ny,

2m—+1 27
12 92 _ 1)B,. Q,
_nt fem (RS @onBy
n+1+2rV n = 25(25 — 1)n? Q1+ Qg

2m i
n+1 21 (22] — 1)B2j
—/— — — | . 4.9
< ntitorV 7 P Z2j(2j—1)n23—1 (4.9)

Jj=1

|3 I3

+1 2 (2% — 1By,
2) > \/>exp - Z —( ‘ ) 2
+1) n e 2j§(2j — 1)n2—1

- (4.8)

In particular, the choice m = 0 on the left-hand side and m = 1 on the right-hand side yields

n+1 2w 1 < Q, < n+1 27 1 n 1
—/—e - \/—exp|——
n+1+2rV n *P 4n Q1+ Qi1 n+l1+27V n P 4n  24n3

(410)
for n € N.
Mortici [24, Theorem 12] improved the bounds in (1.9) and (1.10) as follows:
2w Q, 2w
— T 4eam)< < + ea(n), 411
\/n+47r+§ < g o \/n+47r+§ 2(n) (#.11)
where
1 2 3 3 2 3 4
sm—4n° + 8 sm—Tne —127° + 647
er(n) = AT T A ea(n) = ex(n) + BT T AT .

n3 nt

We remark that the left-hand side of (4.11) holds for n > 10, because
o <0, 1<n<9,
—— +e(n)
n+4r+ 5 >0, n>10.
The right-hand side of (4.11) is valid for all n € N.

Remark 4.2. The inequalities (4.10) are sharper than the inequalities (4.11) and, moreover,
(4.10) is valid for alln € N and has a simple form.

Noting that

1 >1 ! d 1 + 1 < |1 1 + 1 + >
1 I _ 1 5
R an M P, T s an 3202 T 128n°

holds for n € N, we obtain the following alternative form of the double inequality in (4.10):

n+1 /2£ 1_i < Q,
n+14+27V n 4n Q1+ Qi
n+1 2w 1 1 5
S Y L (P T 4.12
<n—|—1+27r n( 4n+32n2+128n3> (4.12)
for n € N.

The following theorem presents a sharp inequality for ,,/(Q2n,-1 + Qnt1)-
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Theorem 4.1. For n € N, we have

1 2 Q, 1 2
n T < <t T (4.13)
n+l+2r\{n+35 -1 Q1+ Qa n+14+ 27w n+ 3

The constants 5 — 1 = 0.5707963 ... and % are the best possible.

Proof. First, we establish the left-hand inequality of (4.13). Elementary calculations show that
this is valid for n = 1 and n = 2. We now prove that the left-hand inequality of (4.13) holds for
n > 3. It suffices to show by appeal to (4.12) that

1 1 1 s
—(1-—= ith c=——1.
ﬁ( 4n>>\/n—|—c W e=5

We find, for n > 3,

(1(1_1)>2_ 1 121c— 69 + (88¢c — 47)(n — 3) + (16¢ — 8)(n — 3)?
N dn nt+c 16n3(n + )

This proves the left-hand inequality of (4.13) for n > 1.

We now establish the right-hand inequality of (4.13). Elementary calculations show that this
is valid for n = 1. We now prove that the right-hand inequality of (4.13) holds for n > 2. Tt
suffices to show by a similar appeal to (4.12) that

> 0.

1 (1 1 n 1 " ) ) < 1
/m\" 4n 2 3
vn dn ~ 32n%  128n "4

N[

We find, for n > 2, that

Lyt 1 5 2
NG 4n 3202 128n° n+3

1
= o (62 192422(n — 2) 4+ 227104(n — 2)% + 1 _9)3
16384n7 (2n + 1) (62899 + 192422(n — 2) + 227104(n — 2)* + 130656(n — 2)

+ 36864 (n — 2)* + 4096(n — 2)5) <0.

This proves the right-hand inequality of (4.13) for n > 1.
If we write (4.13) as

1 142 0, -2
E_lzyn>§u yn:2ﬂ—<n+ +7T ) —n,

2 n+1 Qp_q + Qn+1
we find that
T . 1
=g =1 and lim g =g, (4.14)

The limit in (4.14) is obtained by using the asymptotic expansion (4.4). Hence, the inequality
(4.13) holds for n > 1, and the constants 5 — 1 and % are the best possible. O

Remark 4.3. The inequalities (4.13) are sharper than the inequalities (1.9) and (1.10) forn > 3.
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1/(n+1)

5. ASYMPTOTICS AND INEQUALITIES FOR Q}/”/Qn+1

It is easy to see that

A RS KA

We first establish the asymptotic expansion for I' (z + 3/2)1/(%“) JT(x + 1)1/ (22),

Theorem 5.1. As z — oo, we have

Tz + 1)1/

o0
Hi
z
j=1

~( 277:5)_2””(21”“) exp , (5.1)

with the coefficients p; given by pq = 1/4 and

eyt 1 Ek2 - (28 - 1By ,
ui = (1) { 2j(j—1) 271 +kzzo (k+1)(k +2)27 : } (G1>2. (5.2

Proof. The logarithm of gamma function has asymptotic expansion (see [20, p. 32]):

1 1 (_1)77. 1B'IL+1() 1
InT'(x+t) ~ +t—=|lnzx—z+ -1In(27 E A
nl(z+1t) (sc t 2) nr-—x 5 n( )+n 1 n(n £ 1) o

(5.3)

as * — 00, where B, (t) denotes the Bernoulli polynomials defined by (4.2) with » = 1. Using
(5.3), we find as ¢ — oo

1 1
InT (aj—i—s) ——ml(z4+1)+ ————InV2nz

2x 4+ 1 2 2x 2z(2z + 1)
1 1)F1B,41(3/2) 1
~ Ding —z+1 It
2¢ + 1 (z+1)Inz x—l—n +]Zl jG+1) i
1 1 = Y B (1) 1
_%{<x+2>mx_z+m +;—y
1
——Inv2
ey VT
I & (1)*B4(3/2) 1 & / 1 1
2¢ + 1 = jG+1) xd = 2] 2(2x 4+ 1)
Noting that (when z > 1/2)
1 1 & | ad 1
= — —1) = —1)I7t— 5.5
20 4+1 2z 4 (=1) (2z)7 Z( ) 202 (5:5)
Jj=0 Jj=1
holds, we obtain, as x — oo,
1 i (=1)/*'B;j1(3/2) 1 “i (_1)J+1Bj+1(3/2)i§:(_ et 1
2z +1 = jGG+1) xd ~ jG+1) xl e~ 2k gk
0o j—2 .
S et L] 5o
—k—1 i :
el et (k+1)(k+2)279 a7
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Substitution of the expressions (5.5) and (5.6) into (5.4) then yields

3\ 1/(2z+1) 0o
I (z+3) ~ (Varz) T exp d S
[(z+1)1/(22) I

K
j=1
with the coefficients p; given by

1 [ B1 1 2 Biga(3/2 ‘
M= Nj(l)j{zj(j(_)l)gj+1+];)( ki /) } for j =2.

k+ 1) (k+2)2+1

(5.7)
Noting that

Bn(x+1) = Ba(x) =na"~", Bn(1) = (=1)"Bn, Ba(1/2)=—(1-2'"")B,
holds (see [25, p. 590]), we find that (5.7) can be written as (5.2). This completes the proof. O

From (5.1), we obtain the following explicit asymptotic expansion:

F (l’ + %)1/(2I+1)

() e Ly L 1L 31 s
[(z + 1)1/ Plaz T 1622 7 962% T 3842* 1152020

n 601 4691 n (5.8)
2304028 32256027 ' '
Replacement of = by n/2 in (5.8) yields
/" . 11 11 31 547
~ n(n+1) _ - —
QU (vnr) b { on " AnZ 1207 T 2403 360m°

601 4691 }

el B 59
360n6  2520n7 * (5.9)
and, by Lemma 2.1, we finally obtain the following asymptotic expansion as n — oo:
o)/" S 13 37 115 13781
~ n(ntD) J _ _— — 1
QLD (vn) { o0 T8 T w3 T T28at 1152005 | } (5.10)

Formula (5.8) motivated us to establish the following double inequality for T' (z + 3/ 2)1/ (2e+1) /T (z+
1) 1/(2x) )

Theorem 5.2. For x >1/2,

S - 11 11 T (x4 3)Y/
( 27‘(’1‘) 2m(2%c+1) exp [ — + _ ($+ 2)
4z 1622 9623 T(z + 1)1/@2)
S 11 11 31
< (Vama) FE exp (43: T 1622 9607 T 3843;4)' (510

Proof. In order prove the left-hand side of (5.11), it suffices to show that for x > 1/2,
1 1 1 1 1
—1 - —— InT — ) ——InT 1
2x+1n<x+2>+2x+1n <x+2> 3z @+
1

11 11
Vo (— ——— ) >0
T VT <4:c T 1622 96933) ”
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that is,
1 T(z+1) 1
u(z) :=1In (x—i— 2) —1In (W) - %(lnf(m—&— 1) —ln\/27mc)
1 1 11
e+ =+ — -
(22 + )<4w+ 1622 96x3> >0

Similarly, to prove the right-hand side of (5.11), it suffices to show that for > 1/2,

v(z) i=In (:v+ ;) I (%) - %(lnf(:c-i-l) ~Inv2r)

11 11 31
@ — - 0.
(2w + )(433 T T622 T 9627 T 384964) <

Using the inequalities (2.5) and (2.13), we obtain, for z > 1/2,

() >Inz +1 1+1 11+1 1+1
) = e 2 2 TR T 19243 T 64020

L xlnx—x—l—i—L-i-# —(2z+1) i+ Lo
2z 12z 360z3 12605 4r 1622 96x3
1 2016025 — 5040z* — 483022 — 5622 + 63z + 16
=In(14+—|—

4032025
S i _ L n 1 _ 1 _ 201602° — 5040z* — 483023 — 5622 + 63z + 16
2 8x% 2423 64zt 403202
U EE A S - ) + 90U — )2 + 6510(r — 3)*
403206
and
1 1 1 1
v(z) <lnz+In <1+2x> - <2lnx—|—8x — 192333>
1 1 1 1 1 11 31
- 2;5(9“”‘“ T2 W> — (e 1)(4x T 1627 " 9625 384x4>
1 288023 — 72022 + 240x + 457
=In(l4+—)—
( 2:0) 5760+
<i_i+ 1 _28801:3—720x2+240x+457:_ 457 <.
2 8x%  24x3 5760x* 576024
This completes the proof. O

Replacement of = by n/2 in (5.11) yields

1 11 > QL
Q

1/(n+1)
n+1

1 1
/ n(n+1) P -
(Vi) P <2n * 4n?  12n3

- 1 1 11 31
<(\/n) exp %-i-w—w—Fm , n € N. (5.12)

The expansion (5.10) motivated us to establish the following sharp inequality for Q5" / Q}/ffﬂ).
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Theorem 5.3. Forn € N, we have

. 1 L/ o 1
n(n+1) d n(n+1)
(V) O (1 + o 43W1/4) < YRRy < (Vnm) 70 (1 + o 3). (5.13)
2—ml/4 n+1 2

The constants =371 = 0.008963 ... and % are the best possible.

2—ml/4

Proof. First, we establish the left-hand inequality of (5.13). Elementary calculations show that
this is valid for for n = 1,2 and 3. We now prove the left-hand inequality of (5.13) for n > 4.
For this it suffices to show by appeal to (5.12) that

G(n)>0 for n >4,
where

4 —3rl/4
2 —qt/4”

1 1 11
G(:z:)+31n(1+

20  4z2 12

Differentiation yields

) with a =
2r—a
P3(1‘—4)

G'(2) = C42t(224+1—a)(2z —a)’

where
Ps(x) = 29a* — 493a + 40 + (18a* — 422a + 234)x
+ (2a® — 106a + 104)z* + (12 — 8a)z® >0 for x> 0.

We then obtain G’(x) < 0 for > 4. So, the sequence {G(n)} is strictly decreasing for n > 4,
and we have

G(n) > 1i£n Gim)=0 for n>4.
This proves the left-hand inequality of(5.13) for n > 1.
Now, we establish the right-hand inequality of (5.13). Elementary calculations show that this

is valid for n = 1. We now prove that the right-hand inequality of (5.13) holds for n > 2. It
suffices to show by appeal to (5.12) that

g(n) <0 for n>2,

oL, o3
)=+ — — — —In :
g 90 | dz? 1223 | 244 2

where

3
T2
Differentiation yields
J(z) = 692 + 2211(x — 2) + 2098(x — 2)% + 606(x — 2)3
1225(4z — 1)(4z — 3)

Hence, the sequence {g(n)} is strictly increasing for n > 2, and we have

>0 (x> 2).

g(n) < lim g(m)=0 for n>2.
m—o0

This proves that the right-hand inequality 0(5.13) for n > 1.
If we write (5.13) as
—1

L n
4 — 37‘(1/4 _ § o ( /’I'LTF) n(ni1) Q}/ .
g_qi/a =TSy I QU/ (D) ’

n+1
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we find that

4 —3mt/4 , 3
The limit in (5.14) is obtained by using the asymptotic expansion (5.10). Hence, the inequality
(5.13) holds for n > 1, and the constants % and % are the best possible. O

Remark 5.1. Write (1.1) as

4\ 1/ QL/n
- < —" <V, (5.15)
(ﬂ) Qi

The inequalities (5.13) are sharper than the inequalities (5.15) for n > 2.
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