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INEQUALITIES AND ASYMPTOTIC EXPANSIONS RELATED TO THE

VOLUME OF THE UNIT BALL IN Rn

CHAO-PING CHEN∗ AND RICHARD B. PARIS

Abstract. Let Ωn = πn/2/Γ(n
2

+1) (n ∈ N) denote the volume of the unit ball in Rn. In this

paper, we present asymptotic expansions and inequalities related to Ωn and the quantities:

Ωn−1

Ωn
,

Ωn

Ωn−1 + Ωn+1
and

Ω
1/n
n

Ω
1/(n+1)
n+1

.

1. Introduction

In the recent past, several researchers have established interesting properties of the volume
Ωn of the unit ball in Rn,

Ωn =
πn/2

Γ(n2 + 1)
, n ∈ N := {1, 2, . . .},

including monotonicity properties, inequalities and asymptotic expansions.
Böhm and Hertel [7, p. 264] pointed out that the sequence

{
Ωn
}
n≥1

is not monotonic for

n ≥ 1. Indeed, we have

Ωn < Ωn+1 if 1 ≤ n ≤ 4 and Ωn > Ωn+1 if n ≥ 5.

Anderson et al. [5] showed that
{

Ω
1/n
n

}
n≥1

is monotonically decreasing to zero, while Anderson

and Qiu [4] proved that the sequence
{

Ω
1/(n lnn)
n

}
n≥2

decreases to e−1/2. Guo and Qi [14] proved

that the sequence
{

Ω
1/(n lnn)
n

}
n≥2

is logarithmically convex. Klain and Rota [16] proved that

the sequence
{
nΩn/Ωn−1

}
n≥1

is increasing.

Diverse sharp inequalities for the volume of the unit ball in Rn have been established [2, 3, 6,
8, 11,19,21–24,28]. For example, Alzer [2] proved that for n ∈ N,

a1Ω
n/(n+1)
n+1 ≤ Ωn < b1Ω

n/(n+1)
n+1 , (1.1)

√
n+ a2

2π
<

Ωn−1

Ωn
≤
√
n+ b2

2π
, (1.2)

(
1 +

1

n

)a3
≤ Ω2

n

Ωn−1Ωn+1
<

(
1 +

1

n

)b3
, (1.3)
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with the best possible constants

a1 =
2√
π

= 1.1283 . . . , b1 =
√
e = 1.6487 . . . ,

a2 =
1

2
, b2 =

π

2
− 1 = 0.5707 . . . ,

a3 = 2− lnπ

ln 2
= 0.3485 . . . , b3 =

1

2
.

The double inequality (1.2) refines a result due to Borgwardt [8, p. 253], who proved (1.2)
with a2 = 0 and b2 = 1. Mortici [22, Theorem 3] obtained the following inequality:√

n+ 1
2

2π
<

Ωn−1

Ωn
<

√
n+ 1

2

2π
+

1

16πn
, n ∈ N, (1.4)

which improves the right-hand side of (1.2). Ban and Chen [6, Theorem 3.1] improved (1.4) and
obtained the following double inequality:√

n+ 1
2

2π
+

1

16π(n+ ϑ1)
≤ Ωn−1

Ωn
<

√
n+ 1

2

2π
+

1

16π(n+ ϑ2)
, n ∈ N, (1.5)

with best possible constants

ϑ1 =
13− 4π

4π − 12
= 0.7656283 . . . and ϑ2 =

1

2
.

Merkle [21] improved the left-hand side of (1.3) and obtained the following result:(
1 +

1

n+ 1

)1/2

≤ Ω2
n

Ωn−1Ωn+1
, n ∈ N. (1.6)

Chen and Lin [11, Theorem 3.1] developed (1.6) to produce the following symmetric double
inequality:(

1 +
1

n+ 1

)α
<

Ω2
n

Ωn−1Ωn+1
≤
(

1 +
1

n+ 1

)β
, n ∈ N, (1.7)

with the best possible constants

α =
1

2
, β =

2 ln 2− lnπ

ln 3− ln 2
= 0.5957713 . . . ,

Ban and Chen [6, Theorem 3.2] proved, for n ∈ N,(
1 +

1

n+ θ1

)1/2

≤ Ω2
n

Ωn−1Ωn+1
<

(
1 +

1

n+ θ2

)1/2

, (1.8)

with best possible constants

θ1 =
2π2 − 16

16− π2
= 0.60994576 . . . and θ2 =

1

2
.

Alzer [3] continued the work on this subject and offered new inequalities. For example, Alzer [3,
Theorem 4] proved that for n ≥ 2,

α∗√
n
≤ Ωn

Ωn−1 + Ωn+1
<

β∗√
n
, (1.9)
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with best possible constants

α∗ =
3
√

2π

6 + 4π
= 0.7178 . . . and β∗ =

√
2π = 2.5066 . . . ,

while Chen and Lin [11, Theorem 3.3] proved that for n ∈ N,√
2π

n+ a∗
≤ Ωn

Ωn−1 + Ωn+1
<

√
2π

n+ b∗
, (1.10)

with best possible constants

a∗ =
π(1 + π)2

2
− 1 = 25.94353 . . . , b∗ =

1

2
+ 4π = 13.06637 . . . .

Chen and Lin [11, Theorem 3.4] showed that for n ∈ N,

1√
π(n+ θ)

(
2πe

n

)n/2
≤ Ωn <

1√
π(n+ ϑ)

(
2πe

n

)n/2
, (1.11)

with best possible constants

θ =
e

2
− 1 = 0.3591409 . . . , ϑ =

1

3
.

Recently, Mortici [24] constructed asymptotic series associated with some expressions involving
the volume of the n-dimensional unit ball. New refinements and improvements of some old and
recent inequalities for Ωn are also presented. Lu and Zhang [19] established a general continued
fraction approximation for the nth root of the volume of the unit n-dimensional ball, and then
obtained related inequalities.

In this paper, we present asymptotic expansions and inequalities related to Ωn and the quan-
tities:

Ωn−1

Ωn
,

Ωn
Ωn−1 + Ωn+1

and
Ω

1/n
n

Ω
1/(n+1)
n+1

.

The numerical values given in this paper have been calculated via the computer program MAPLE
17.

2. Lemmas

The following lemmas are required in our present investigation.

Lemma 2.1 ( [10, Theorem 5]). Let

A(x) =

∞∑
n=1

anx
−n, x→∞

be an asymptotical expansion. Then the composition exp(A(x)) has the asymptotic expansion
given by

exp(A(x)) =

∞∑
n=0

bnx
−n, x→∞,

where

b0 = 1, bn =
1

n

n∑
k=1

kakbn−k, n ≥ 1.
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Lemma 2.2 ( [1, Theorem 8]). For every m ∈ N0, the function

Rm(x) = (−1)m

ln Γ(x+ 1)−
(
x+

1

2

)
lnx+ x− ln

√
2π −

m∑
j=1

B2j

2j(2j − 1)x2j−1


(2.1)

is completely monotonic on (0,∞), where here and elsewhere in this paper an empty sum is
understood to be zero. Here Bn (n ∈ N0 := N ∪ {0}) are the Bernoulli numbers defined by the
following generating function:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, |t| < 2π. (2.2)

In 2006, Koumandos [17] presented a simpler proof of complete monotonicity of the functions
Rm(x), which was further strengthened by Koumandos and Pedersen in [18, Theorem 2.1].

Recall that a function f is said to be completely monotonic on an interval I if it has derivatives
of all orders on I and satisfies the following inequality:

(−1)nf (n)(x) ≥ 0 for x ∈ I and n ∈ N0. (2.3)

Dubourdieu [13, p. 98] pointed out that, if a non-constant function f is completely monotonic
on I = (a,∞), then strict inequality holds true in (2.3); see also [15] for a simpler proof of this
result.

The gamma function Γ(x) is one of the most important functions in mathematical analysis
and has applications in many diverse areas. The logarithmic derivative of Γ(x), denoted by
ψ(x) = Γ′(x)/Γ(x), is called the psi (or digamma) function. It is known that

Γ(x+ 1) = xΓ(x) and ψ(x+ 1) = ψ(x) +
1

x
.

From the inequality Rm(x) > 0 for x > 0 and m ∈ N0, we obtain that for x > 0 and n ∈ N0,

2n∑
j=1

B2j

2j(2j − 1)x2j−1
< ln

(
Γ(x+ 1)√
2πx(x/e)x

)
<

2n+1∑
j=1

B2j

2j(2j − 1)x2j−1
(2.4)

In particular, the choice n = 1 in (2.4) yields

x lnx−x+
1

12x
− 1

360x3
< ln Γ(x+1)−ln

√
2πx < x lnx−x+

1

12x
− 1

360x3
+

1

1260x5
, x > 0.

(2.5)

From the inequality R′m(x) < 0 for x > 0 and m ∈ N0, we obtain that for x > 0 and n ∈ N0,

2n∑
j=1

B2j

2jx2j
< lnx+

1

2x
− ψ(x+ 1) <

2n+1∑
j=1

B2j

2jx2j
(2.6)

In particular, the choice n = 1 in (2.6) yields

1

12x2
− 1

120x4
< lnx+

1

2x
− ψ(x+ 1) <

1

12x2
− 1

120x4
+

1

252x6
, x > 0. (2.7)

Let Ωx = πx/2/Γ(x2 + 1). We find that (2.1) can be written as

Rm(x) = (−1)m

ln

(
1√
2πx

(πe
x

)x)
− ln Ω2x −

m∑
j=1

B2j

2j(2j − 1)x2j−1

 . (2.8)
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From the inequality Rm(x) > 0 for x > 0 and m ∈ N0, we then obtain

1√
2πx

(πe
x

)x
exp

(
−

2m+1∑
i=1

B2i

2i(2i− 1)x2i−1

)
< Ω2x

<
1√
2πx

(πe
x

)x
exp

(
−

2m∑
i=1

B2i

2i(2i− 1)x2i−1

)
. (2.9)

Replacement of x by n/2 in (2.9) then produces the following double inequality for Ωn:

1√
nπ

(
2πe

n

)n/2
exp

− 2m+1∑
j=1

22jB2j

4j(2j − 1)n2j−1

 < Ωn

<
1√
nπ

(
2πe

n

)n/2
exp

− 2m∑
j=1

22jB2j

4j(2j − 1)n2j−1

 (2.10)

for n ∈ N and m ∈ N0.
Mortici [23, Theorem 2] has given the following double inequality:

1√
nπ

(
2πe

n

)n/2
exp

(
− 1

6n
+

1

45n3
− 8

315n5
+

8

105n7
− 128

297n9

)
< Ωn

<
1√
nπ

(
2πe

n

)n/2
exp

(
− 1

6n
+

1

45n3
− 8

315n5
+

8

105n7

)
, n ∈ N, (2.11)

which can be seen to follow from (2.10) when m = 2.

Lemma 2.3 (see [12, Corollary 1]). Let m ∈ N0. Then for x > 0,

√
x exp

 2m∑
j=1

(
1− 1

22j

)
B2j

j(2j − 1)x2j−1

 <
Γ(x+ 1)

Γ(x+ 1
2 )

<
√
x exp

2m+1∑
j=1

(
1− 1

22j

)
B2j

j(2j − 1)x2j−1

 . (2.12)

In particular, the choice m = 1 in (2.12) yields

1

2
lnx+

1

8x
− 1

192x3
< ln

(
Γ(x+ 1)

Γ(x+ 1
2 )

)
<

1

2
lnx+

1

8x
− 1

192x3
+

1

640x5
, x > 0. (2.13)

3. Asymptotics and inequalities for Ωn

The asymptotic expansion of Ωn as n→∞ is given by

Ωn =
2πn/2

n

1

Γ(n2 )
∼ 1√

nπ

(
2πe

n

)n/2 ∞∑
k=0

2kγk
nk

=
1√
nπ

(
2πe

n

)n/2{
1− 1

6n
+

1

72n2
+

139

6480n3
− 571

155520n4
− 163879

6531840n5

+
5246819

1175731200n6
+

534703531

7054387200n7
− · · ·

}
, (3.1)
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which follows from the well-known result

1

Γ(z)
∼ ezz

1
2−z
√

2π

∞∑
k=0

γkz
−k (z →∞, | arg z| < π);

see, for example, [26, p. 32], [27, p. 70]. The γk denote the Stirling coefficients defined by the
recurrence (with d0 = 1)

γk =
(−2)kΓ(k + 1

2 )
√
π

d2k, dn =
n+ 1

n+ 2

dn−1

n
−
n−1∑
j=1

djdn−j
j + 1

 (n ≥ 1).

The first few values of γk are

γ0 = 1, γ1 = − 1

12
, γ2 =

1

288
, γ3 =

139

51840
, γ4 = − 571

2488320
, γ5 = − 163879

209018880
,

γ6 =
5246819

75246796800
, γ7 =

534703531

902961561600
, . . . .

The expansion (3.1) was also given by Mortici in [24, Theorem 1].
Motivated by (3.1) we establish the following theorem.

Theorem 3.1. Let1

V (x) =
Ω2x

1√
2πx

(
πe
x

)x . (3.2)

Then, for x ≥ 1/2, we have

5∑
k=0

γkx
−k < V (x) <

7∑
k=0

γkx
−k (3.3)

and

V ′(x) <

5∑
k=1

(−k)γkx
−k−1. (3.4)

Proof. Here we only prove the left-hand side of (3.3) as the proof of the right-hand side is
analogous. The inequality (2.9) can be written as

exp

− 2m+1∑
j=1

B2j

2j(2j − 1)x2j−1

 < V (x) < exp

− 2m∑
j=1

B2j

2j(2j − 1)x2j−1

 . (3.5)

The choice m = 1 on the left-hand side of (3.5) then yields,

exp

(
− 1

12x
+

1

360x3
− 1

1260x5

)
< V (x).

In order prove the left-hand side of (3.3), it suffices to show for x ≥ 1/2 that

5∑
k=0

γkx
−k < exp

(
− 1

12x
+

1

360x3
− 1

1260x5

)
. (3.6)

1In terms of the scaled gamma function Γ∗(x) = (exx
1
2
−x/

√
2π)Γ(x), the function V (x) = 1/Γ∗(x). Conse-

quently, the double inequality (3.3) supplies bounds on 1/Γ∗(x).
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The inequality (3.6) is obtained by considering the function P (x) defined, for x ≥ 1/2, by

P (x) := ln

5∑
k=0

γkx
−k −

(
− 1

12x
+

1

360x3
− 1

1260x5

)
.

Differentiation yields

P ′(x) =
P4(x− 1

2 )

20160x6P5(x− 1
2 )
,

where

P4(x) = 98855357 + 763346136x+ 2472851136x2 + 3459743616x3 + 1762931184x4,

P5(x) = 5486171 + 57666084x+ 236795328x2 + 488436480x3 + 505128960x4

+ 209018880x5.

Thus, we have P ′(x) > 0 for x ≥ 1/2. So, P (x) is strictly increasing for x ≥ 1/2, and we have

P (x) < lim
t→∞

P (t) = 0 for x ≥ 1

2
.

Hence, (3.6) holds for x ≥ 1/2.
Since the function Rm(x) defined by (2.8) is completely monotonic on (0,∞), we have, for

x > 0 and m ∈ N0,

R′m(x) = (−1)m+1

V ′(x)

V (x)
−

m∑
j=1

B2j

2jx2j

 < 0, so that V ′(x) < V (x)

2m+1∑
j=1

B2j

2jx2j
.

Using the right-hand side of (3.3), we obtain that

V ′(x) < V (x)

3∑
j=1

B2j

2jx2j

<

(
1− 1

12x
+

1

288x2
+

139

51840x3
− 571

2488320x4
− 163879

209018880x5

+
5246819

75246796800x6
+

534703531

902961561600x7

)(
1

12x2
− 1

120x4
+

1

252x6

)
=

1

12x2
− 1

144x3
− 139

17280x4
+

571

622080x5
+

163879

41803776x6
+R(x), (3.7)

where

R(x) = − 1

2275463135232000x13

{
25799409925

8
+

215497370169

2

(
x− 1

2

)
+ 627676689198

(
x− 1

2

)2

+ 1958303670708

(
x− 1

2

)3

+ 3296254174710

(
x− 1

2

)4

+ 2807022408120

(
x− 1

2

)5

+ 951982839360

(
x− 1

2

)6}
< 0 for x ≥ 1

2
.

Hence, upon identifying the coefficients of x−k−1(1 ≤ k ≤ 5) in (3.7) as (−k)γk, we see that (3.4)
holds for x ≥ 1/2. This completes the proof. �
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Remark 3.1. Noting that

7∑
k=4

γkx
−k = − 571

2488320x4
− 163879

209018880x5
+

5246819

75246796800x6
+

534703531

902961561600x7

= −
117938613 + 800398812(x− 1

2 ) + 1018764000(x− 1
2 )2 + 207204480(x− 1

2 )3

902961561600x7
< 0

holds for x ≥ 1/2, we obtain from the right-hand side of (3.3) that

V (x) < 1− 1

12x
+

1

288x2
+

139

51840x3
, x ≥ 1

2
. (3.8)

Remark 3.2. Replacement of x by n/2 in (3.3) yields the following double inequality for Ωn:

1√
nπ

(
2πe

n

)n/2(
1− 1

6n
+

1

72n2
+

139

6480n3
− 571

155520n4
− 163879

6531840n5

)
< Ωn

<
1√
nπ

(
2πe

n

)n/2(
1− 1

6n
+

1

72n2
+

139

6480n3
− 571

155520n4
− 163879

6531840n5

+
5246819

1175731200n6
+

534703531

7054387200n7

)
. (3.9)

From the right-hand side of (1.11) it follows that

Ωn ≈
1√

π(n+ 1
3 )

(
2πe

n

)n/2
, n→∞. (3.10)

Theorem 3.2 develops the approximation formula (3.10) to produce a complete asymptotic ex-
pansion.

Theorem 3.2. The following asymptotic expansion holds:

Ωn ∼
1√

π(n+ 1
3 )

(
2πe

n

)n/2
exp

 ∞∑
j=2

aj
nj

 , n→∞, (3.11)

where the coefficients aj (j ≥ 2) are given by

aj =
(−1)j−1

2j · 3j
− 2jBj+1

j(j + 1)
(3.12)

and Bj denote the Bernoulli numbers.

Proof. Noting that Ω2x = πx/Γ(x+ 1), we find that

x lnx− x+ ln(
√

2πx)− ln Γ(x+ 1) +
1

2
ln

(
1 +

1

6x

)
∼
∞∑
j=2

aj
(2x)j

(3.13)

as x→∞, where aj (j ≥ 2) are real numbers to be determined.
Stirling’s series for the gamma function is given (see [25, p. 140]) by

ln Γ(x+ 1) ∼ x lnx− x+ ln(
√

2πx) +

∞∑
j=1

Bj+1

j(j + 1)xj
, x→∞. (3.14)
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The Maclaurin expansion of ln(1 + t) with t = 1/(6x) gives

ln

(
1 +

1

6x

)
=

∞∑
j=1

(−1)j−1 1

j · 6jxj
. (3.15)

Substitution of (3.14) and (3.15) into (3.13) yields

∞∑
j=2

(
(−1)j−1

2j · 6j
− Bj+1

j(j + 1)

)
1

xj
∼
∞∑
j=2

aj
2j

1

xj
. (3.16)

Equating coefficients of equal powers of x in (3.16) we obtain (3.12). This completes the proof. �

From (3.11), we find the following explicit asymptotic expansion:

Ωn ∼
1√

π(n+ 1
3 )

(
2πe

n

)n/2
exp

(
− 1

36n2
+

23

810n3
− 1

648n4
− 85

3402n5
− 1

8748n6

+
1667

21870n7
− 1

104976n8
− 1679605

3897234n9
− 1

1180980n10
+ · · ·

)
. (3.17)

By Lemma 2.1, we then obtain the following asymptotic expansion:

Ωn ∼
1√

π(n+ 1
3 )

(
2πe

n

)n/2 ∞∑
j=0

bj
nj

 , n→∞, (3.18)

where the coefficients bj are given by

b0 = 1, bj =
1

j

j∑
k=1

kakbj−k, j ≥ 1, (3.19)

and aj are given in (3.12). This produces the expansion

Ωn ∼
1√

π(n+ 1
3 )

(
2πe

n

)n/2{
1− 1

36n2
+

23

810n3
− 1

864n4
− 5261

204120n5

+
6889

20995200n6
+

125549

1632960n7
− · · ·

}
. (3.20)

The expansion in (3.20) motivated us to establish the following double inequality for Ωn.

Theorem 3.3. For n ∈ N,

1√
π(n+ 1

3 )

(
2πe

n

)n/2(
1− 1

36n2
+

23

810n3
− 1

864n4
− 5261

204120n5

)
< Ωn

<
1√

π(n+ 1
3 )

(
2πe

n

)n/2(
1− 1

36n2
+

23

810n3

)
. (3.21)

Proof. It suffices to show that

F (x) > 0 and f(x) < 0 for x ≥ 1

2
,
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where

F (x) = x lnx− x+ ln(
√

2πx)− ln Γ(x+ 1) +
1

2
ln

(
1 +

1

6x

)
− ln

(
1− 1

36(2x)2
+

23

810(2x)3
− 1

864(2x)4
− 5261

204120(2x)5

)
and

f(x) = x lnx− x+ ln(
√

2πx)− ln Γ(x+ 1) +
1

2
ln

(
1 +

1

6x

)
− ln

(
1− 1

36(2x)2
+

23

810(2x)3

)
.

Differentiating f(x) and applying the left-hand side of (2.7), we obtain that for x ≥ 1/2,

f ′(x) = lnx+
1

2x
− ψ(x+ 1)− 6480x3 − 693x− 115 + 1080x2

2x(6x+ 1)(6480x3 − 45x+ 23)

>
1

12x2
− 1

120x4
− 6480x3 − 693x− 115 + 1080x2

2x(6x+ 1)(6480x3 − 45x+ 23)

=
1350x3 + 500x2 − 93x− 23

120x4(6x+ 1)(6480x3 − 45x+ 23)
> 0.

Hence, f(x) is strictly increasing for x ≥ 1/2, and we have

f(x) < lim
t→∞

f(t) = 0 for x ≥ 1

2
.

Differentiating F (x) and applying the right-hand side of (2.7), we obtain that for x ≥ 1/2,

F ′(x) = lnx+
1

2x
− ψ(x+ 1)

− 3(4354560x5 − 465696x3 − 62160x2 + 212645x+ 31566 + 725760x4)

2x(6x+ 1)(13063680x5 − 90720x3 + 46368x2 − 945x− 10522)

<
1

12x2
− 1

120x4
+

1

252x6

− 3(4354560x5 − 465696x3 − 62160x2 + 212645x+ 31566 + 725760x4)

2x(6x+ 1)(13063680x5 − 90720x3 + 46368x2 − 945x− 10522)

= −
P5(x− 1

2 )

2520x6(6x+ 1)Q5(x− 1
2 )
,

where

P5(x) =
9402445

16
+

29999799

8
x+ 14897652x2 + 28984704x3 + 23697723x4 + 6076098x5,

Q5(x) =
794995

2
+ 4059783x+ 16239888x2 + 32568480x3 + 32659200x4 + 13063680x5.

Hence, F ′(x) < 0 for x ≥ 1/2. So, F (x) is strictly decreasing for x ≥ 1/2, and we have

F (x) > lim
t→∞

f(t) = 0 for x ≥ 1

2
.

This completes the proof. �
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Mortici [24, Theorem 3] improved (1.11) and obtained the following double inequality, for
every integer n ≥ 3 on the left-hand side and n ≥ 1 on the right-hand side:

(2πe/n)n/2√
π
(
n+ 1

3 + 1
18n −

31
810n2

) < Ωn <
(2πe/n)n/2√

π
(
n+ 1

3 + 1
18n −

31
810n2 − 139

9720n3

) . (3.22)

This last inequality implies

Ωn =
(2πe/n)n/2√

π
(
n+ 1

3 + 1
18n −

31
810n2 +O

(
1
n3

) ) . (3.23)

If we now define vn by the equality

Ωn =
1√

π (n+ vn)

(
2πe

n

)n/2
, (3.24)

we find vn = θ (n/2), where

θ(x) = 2x

{(
Γ(x+ 1)√
2πx(x/e)x

)2

− 1

}
. (3.25)

Theorem 3.4 presents the asymptotic expansion and inequality for θ(x).

Theorem 3.4. (i) The function θ(x) has the following asymptotic expansion:

θ(x) ∼
∞∑
j=0

cj
xj
, x→∞, (3.26)

with the coefficients cj given by

cj = 2λj+1, j ∈ N0, (3.27)

where

λ0 = 1, λj =
1

j

j∑
k=1

2Bk+1

k + 1
λj−k, j ∈ N. (3.28)

Namely,

θ(x) ∼ 1

3
+

1

36x
− 31

3240x2
− 139

77760x3
+

9871

3265920x4
+

324179

587865600x5
− 8225671

3527193600x6

− 69685339

169305292800x7
+

1674981058019

502836719616000x8
+

24279707153761

42238284447744000x9
− · · · . (3.29)

(ii) For x > 0 and m ∈ N0,

2x

exp

 2m∑
j=1

B2j

j(2j − 1)x2j−1

− 1

 < θ(x) < 2x

exp

2m+1∑
j=1

B2j

j(2j − 1)x2j−1

− 1

 .

(3.30)

Proof. It follows from [9, (3.6)] that(
Γ(x+ 1)√
2πx (x/e)

x

)2

∼
∞∑
j=0

λjx
−j , x→∞, (3.31)
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with the coefficients λj given by

λ0 = 1, λj =
1

j

j∑
k=1

2Bk+1

k + 1
λj−k, j ≥ 1.

Combination of (3.25) and (3.31) then gives (3.26).
Write (2.4) as

exp

 2m∑
j=1

B2j

j(2j − 1)x2j−1

 <

(
Γ(x+ 1)√
2πx(x/e)x

)2

< exp

2m+1∑
j=1

B2j

j(2j − 1)x2j−1

 . (3.32)

Combination of (3.25) and (3.32) then gives (3.30). This completes the proof. �

Corollary 3.1. (i) The sequence vn = θ(n/2) has the following asymptotic expansion:

vn ∼
∞∑
j=0

dj
nj
, n→∞, (3.33)

with the coefficients dj given by

dj = 2j+1λj+1, j ∈ N0,

where λj are given in (3.28). Namely,

vn ∼
1

3
+

1

18n
− 31

810n2
− 139

9720n3
+

9871

204120n4
+

324179

18370800n5
− 8225671

55112400n6

− 69685339

1322697600n7
+

1674981058019

1964205936000n8
+

24279707153761

82496649312000n9
− · · · . (3.34)

(ii) For n ∈ N and m ∈ N0, we have

n exp

 2m∑
j=1

22j−1B2j

j(2j − 1)n2j−1

 < n+ vn < n exp

2m+1∑
j=1

22j−1B2j

j(2j − 1)n2j−1

 . (3.35)

It follows from (3.24) and (3.33) that

Ωn ∼
(2πe/n)

n/2√
π
(
n+

∞∑
j=0

dj
nj

) (3.36)

which develops (3.23) to produce a complete asymptotic expansion.
From (3.24) and (3.35) we see that for n ∈ N and m ∈ N0,

(2πe/n)
n/2√√√√πn exp

(
2m+1∑
j=1

22j−1B2j

j(2j−1)n2j−1

) < Ωn <
(2πe/n)

n/2√√√√πn exp

(
2m∑
j=1

22j−1B2j

j(2j−1)n2j−1

) . (3.37)

In particular, the choice m = 1 on the left-hand side and m = 2 on the right-hand side yields

(2πe/n)
n/2√

πn exp
(

1
3n −

2
45n3 + 16

315n5

) < Ωn <
(2πe/n)

n/2√
πn exp

(
1

3n −
2

45n3 + 16
315n5 − 16

105n7

) (3.38)

for n ∈ N.
The inequalities (3.38) are sharper than the inequalities (3.22) for n ≥ 4.
Based on the formula (3.1) we now establish a sharp inequality for Ωn.
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Theorem 3.5. For n ∈ N, we have

1√
nπ

(
2πe

n

)n/2(
1− 1

6n+ p

)
< Ωn ≤

1√
nπ

(
2πe

n

)n/2(
1− 1

6n+ q

)
(3.39)

with the best possible constants

p =
1

2
and q =

6
√

2− 5
√
e

√
e−
√

2
= 1.03056322 . . . . (3.40)

Proof. If we write (3.39) as

p < xn ≤ q, xn =

1− Ωn
1√
nπ

(
2πe
n

)n/2
−1

− 6n,

we find that

x1 =
6
√

2− 5
√
e

√
e−
√

2
and lim

n→∞
xn =

1

2
. (3.41)

The limit in (3.41) is obtained by using the asymptotic expansion (3.1).
In order prove Theorem 3.5, it suffices to show that the sequence {xn} is strictly decreasing for

n ≥ 1. The monotonicity property of {xn} is obtained by considering the function U(x) defined
by

U(x) =
1

1− V (x)
− 12x,

where V (x) is given in (3.2). Differentiating U(x) and applying (3.4) and (3.8), we obtain that
for x ≥ 2,

−(1− V (x))2U ′(x) = 12(1− V (x))2 − V ′(x)

> 12

(
1

12x
− 1

288x2
− 139

51840x3

)2

−
(

1

12x2
− 1

144x3
− 139

17280x4
+

571

622080x5
+

163879

41803776x6

)
=

19066289 + 33264000(x− 2) + 8860320(x− 2)2

3135283200x6
> 0.

Hence, U(x) is strictly decreasing for x ≥ 2. We then obtain that the sequence {xn} = {U(n/2)}
is strictly decreasing for n ≥ 4.

Direct computation yields

x1 = 1.030563 . . . , x2 = 0.843071 . . . x3 = 0.748041 . . . x4 = 0.692684 . . . .

Consequently, the sequence {xn} is strictly decreasing for all n ≥ 1. This completes the proof. �

4. Asymptotics and inequalities for Ωn−1

Ωn
and Ωn

Ωn−1+Ωn+1

It is easy to see that

Ωn−1

Ωn
=

Γ
(
n
2 + 1

)
√
πΓ(n2 + 1

2 )
,

Ωn
Ωn−1 + Ωn+1

=

√
π(n+ 1)Γ

(
n
2 + 1

2

)
(n+ 1 + 2π)Γ(n2 + 1)

. (4.1)
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The asymptotic expansion of these two ratios follows immediately from the well-known expansion
for the ratio of two gamma functions [25, p. 141]

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑
k=0

(
a− b
k

)
B

(a−b+1)
k (a)z−a (z →∞, | arg z| < π),

where B
(ν)
k (x) denote the generalized Bernoulli polynomials defined by(

t

et − 1

)ν
ext =

∞∑
k=0

B
(ν)
k (x)

tk

k!
, |t| < 2π. (4.2)

Hence we obtain the expansions

Ωn−1

Ωn
∼
√

n

2π

∞∑
k=0

(
1/2

k

)
B

(3/2)
k (1)

(
2

n

)k
=

√
n

2π

{
1 +

1

4n
+

1

32n2
− 5

128n3
− 21

2048n4
+

399

8192n5
+

869

65536n6

− 39325

262144n7
− 334477

8388608n8
+ · · ·

}
(4.3)

and

Ωn
Ωn−1 + Ωn+1

∼ n+ 1

n+ 1 + 2π

√
2π

n

∞∑
k=0

(
−1/2

k

)
B

(1/2)
k ( 1

2 )

(
2

n

)k
=

n+ 1

n+ 1 + 2π

√
2π

n

{
1− 1

4n
+

1

32n2
+

5

128n3
− 21

2048n4
− 399

8192n5
+ · · ·

}
.

(4.4)

Formula (4.3) was presented by Mortici in [24, Theorem 8].
Upper and lower bounds for the ratio Ωn−1/Ωn can be obtained by replacement of x by n/2

in (2.12) to find√
n

2π
exp

 2m∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1

 <
Ωn−1

Ωn
<

√
n

2π
exp

2m+1∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1

 . (4.5)

Mortici [24, Theorem 7] established the following inequality:√
n

2π
exp

(
1

4n
− 1

24n3
+

1

20n5
− 17

112n7

)
<

Ωn−1

Ωn

<

√
n

2π
exp

(
1

4n
− 1

24n3
+

1

20n5
− 17

112n7
+

31

36n9

)
, n ∈ N. (4.6)

We observe that the choice m = 2 in (4.5) yields (4.6).
Based on (4.3), Mortici [24, Theorem 9] established the following inequality:√

n

2π

(
1 +

1

4n
+

1

32n2
− 5

128n3
− 21

2048n4
+

399

8192n5

)
<

Ωn−1

Ωn

<

√
n

2π

(
1 +

1

4n
+

1

32n2
− 5

128n3
− 21

2048n4
+

399

8192n5
+

869

65536n6

)
, n ∈ N. (4.7)

Remark 4.1. The left-hand side of (4.6) is sharper than the left-hand side of (4.7) for n ≥ 10.
The right-hand side of (4.6) is sharper than the right-hand side of (4.7) for n ≥ 3.
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Replacement of x by n/2 in (2.12) yields√
2

n
exp

− 2m∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1

 >
Γ(n2 + 1

2 )

Γ(n2 + 1)
>

√
2

n
exp

− 2m+1∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1


(4.8)

for n ∈ N and m ∈ N0. We then find form (4.1) and (4.8) that, for n ∈ N and m ∈ N0,

n+ 1

n+ 1 + 2π

√
2π

n
exp

− 2m+1∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1

 <
Ωn

Ωn−1 + Ωn+1

<
n+ 1

n+ 1 + 2π

√
2π

n
exp

− 2m∑
j=1

(22j − 1)B2j

2j(2j − 1)n2j−1

 . (4.9)

In particular, the choice m = 0 on the left-hand side and m = 1 on the right-hand side yields

n+ 1

n+ 1 + 2π

√
2π

n
exp

(
− 1

4n

)
<

Ωn
Ωn−1 + Ωn+1

<
n+ 1

n+ 1 + 2π

√
2π

n
exp

(
− 1

4n
+

1

24n3

)
(4.10)

for n ∈ N.
Mortici [24, Theorem 12] improved the bounds in (1.9) and (1.10) as follows:√

2π

n+ 4π + 1
2

+ ε1(n) <
Ωn

Ωn−1 + Ωn+1
<

√
2π

n+ 4π + 1
2

+ ε2(n), (4.11)

where

ε1(n) = −
1
4π − 4π2 + 8π3

n3
and ε2(n) = ε1(n) +

3
8π − 7π2 − 12π3 + 64π4

n4
.

We remark that the left-hand side of (4.11) holds for n ≥ 10, because

2π

n+ 4π + 1
2

+ ε1(n)

< 0, 1 ≤ n ≤ 9,

> 0, n ≥ 10.

The right-hand side of (4.11) is valid for all n ∈ N.

Remark 4.2. The inequalities (4.10) are sharper than the inequalities (4.11) and, moreover,
(4.10) is valid for all n ∈ N and has a simple form.

Noting that

exp

(
− 1

4n

)
> 1− 1

4n
and exp

(
− 1

4n
+

1

24n3

)
<

(
1− 1

4n
+

1

32n2
+

5

128n3

)
holds for n ∈ N, we obtain the following alternative form of the double inequality in (4.10):

n+ 1

n+ 1 + 2π

√
2π

n

(
1− 1

4n

)
<

Ωn
Ωn−1 + Ωn+1

<
n+ 1

n+ 1 + 2π

√
2π

n

(
1− 1

4n
+

1

32n2
+

5

128n3

)
(4.12)

for n ∈ N.
The following theorem presents a sharp inequality for Ωn/(Ωn−1 + Ωn+1).
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Theorem 4.1. For n ∈ N, we have

n+ 1

n+ 1 + 2π

√
2π

n+ π
2 − 1

≤ Ωn
Ωn−1 + Ωn+1

<
n+ 1

n+ 1 + 2π

√
2π

n+ 1
2

. (4.13)

The constants π
2 − 1 = 0.5707963 . . . and 1

2 are the best possible.

Proof. First, we establish the left-hand inequality of (4.13). Elementary calculations show that
this is valid for n = 1 and n = 2. We now prove that the left-hand inequality of (4.13) holds for
n ≥ 3. It suffices to show by appeal to (4.12) that

1√
n

(
1− 1

4n

)
>

1√
n+ c

with c =
π

2
− 1.

We find, for n ≥ 3,(
1√
n

(
1− 1

4n

))2

− 1

n+ c
=

121c− 69 + (88c− 47)(n− 3) + (16c− 8)(n− 3)2

16n3(n+ c)
> 0.

This proves the left-hand inequality of (4.13) for n ≥ 1.
We now establish the right-hand inequality of (4.13). Elementary calculations show that this

is valid for n = 1. We now prove that the right-hand inequality of (4.13) holds for n ≥ 2. It
suffices to show by a similar appeal to (4.12) that

1√
n

(
1− 1

4n
+

1

32n2
+

5

128n3

)
<

1√
n+ 1

2

.

We find, for n ≥ 2, that(
1√
n

(
1− 1

4n
+

1

32n2
+

5

128n3

))2

− 1

n+ 1
2

= − 1

16384n7(2n+ 1)

(
62899 + 192422(n− 2) + 227104(n− 2)2 + 130656(n− 2)3

+ 36864(n− 2)4 + 4096(n− 2)5
)
< 0.

This proves the right-hand inequality of (4.13) for n ≥ 1.
If we write (4.13) as

π

2
− 1 ≥ yn >

1

2
, yn = 2π

(
n+ 1 + 2π

n+ 1

Ωn
Ωn−1 + Ωn+1

)−2

− n,

we find that

y1 =
π

2
− 1 and lim

n→∞
yn =

1

2
. (4.14)

The limit in (4.14) is obtained by using the asymptotic expansion (4.4). Hence, the inequality
(4.13) holds for n ≥ 1, and the constants π

2 − 1 and 1
2 are the best possible. �

Remark 4.3. The inequalities (4.13) are sharper than the inequalities (1.9) and (1.10) for n ≥ 3.
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5. Asymptotics and inequalities for Ω
1/n
n /Ω

1/(n+1)
n+1

It is easy to see that

Ω
1/n
n

Ω
1/(n+1)
n+1

=
Γ
(
n
2 + 3

2

)1/(n+1)

Γ
(
n
2 + 1

)1/n .

We first establish the asymptotic expansion for Γ (x+ 3/2)
1/(2x+1)

/Γ(x+ 1)1/(2x).

Theorem 5.1. As x→∞, we have

Γ
(
x+ 3

2

)1/(2x+1)

Γ(x+ 1)1/(2x)
∼
(√

2πx
)− 1

2x(2x+1) exp


∞∑
j=1

µj
xj

 , (5.1)

with the coefficients µj given by µ1 = 1/4 and

µj = (−1)j

{
(−1)j+1Bj
2j(j − 1)

− 1

2j+1
+

j−2∑
k=0

k + 2− (2k+1 − 1)Bk+2

(k + 1)(k + 2)2j

}
(j ≥ 2). (5.2)

Proof. The logarithm of gamma function has asymptotic expansion (see [20, p. 32]):

ln Γ(x+ t) ∼
(
x+ t− 1

2

)
lnx− x+

1

2
ln(2π) +

∞∑
n=1

(−1)n+1Bn+1(t)

n(n+ 1)

1

xn
(5.3)

as x → ∞, where Bn(t) denotes the Bernoulli polynomials defined by (4.2) with ν = 1. Using
(5.3), we find as x→∞

1

2x+ 1
ln Γ

(
x+

3

2

)
− 1

2x
ln Γ(x+ 1) +

1

2x(2x+ 1)
ln
√

2πx

∼ 1

2x+ 1

(x+ 1) lnx− x+ ln(
√

2π) +

∞∑
j=1

(−1)j+1Bj+1(3/2)

j(j + 1)

1

xj


− 1

2x

{(
x+

1

2

)
lnx− x+ ln(

√
2π) +

∞∑
j=1

(−1)j+1Bj+1(1)

j(j + 1)

1

xj

}

+
1

2x(2x+ 1)
ln
√

2πx

∼ 1

2x+ 1

∞∑
j=1

(−1)j+1Bj+1(3/2)

j(j + 1)

1

xj
−
∞∑
j=2

(−1)jBj(1)

2j(j − 1)

1

xj
+

1

2(2x+ 1)
. (5.4)

Noting that (when x ≥ 1/2)

1

2x+ 1
=

1

2x

∞∑
j=0

(−1)j
1

(2x)j
=

∞∑
j=1

(−1)j−1 1

2jxj
(5.5)

holds, we obtain, as x→∞,

1

2x+ 1

∞∑
j=1

(−1)j+1Bj+1(3/2)

j(j + 1)

1

xj
∼
∞∑
j=1

(−1)j+1Bj+1(3/2)

j(j + 1)

1

xj

∞∑
k=1

(−1)k−1 1

2kxk

∼
∞∑
j=2

{
j−2∑
k=0

(−1)jBk+2(3/2)

(k + 1)(k + 2)2j−k−1

}
1

xj
. (5.6)



18 CHAO-PING CHEN AND R.B. PARIS

Substitution of the expressions (5.5) and (5.6) into (5.4) then yields

Γ
(
x+ 3

2

)1/(2x+1)

Γ(x+ 1)1/(2x)
∼
(√

2πx
)− 1

2x(2x+1) exp


∞∑
j=1

µj
xj

 ,

with the coefficients µj given by

µ1 =
1

4
, µj = (−1)j

{
− Bj(1)

2j(j − 1)
− 1

2j+1
+

j−2∑
k=0

Bk+2(3/2)

(k + 1)(k + 2)2j−k−1

}
for j ≥ 2.

(5.7)

Noting that

Bn(x+ 1)−Bn(x) = nxn−1, Bn(1) = (−1)nBn, Bn(1/2) = −(1− 21−n)Bn

holds (see [25, p. 590]), we find that (5.7) can be written as (5.2). This completes the proof. �

From (5.1), we obtain the following explicit asymptotic expansion:

Γ
(
x+ 3

2

)1/(2x+1)

Γ(x+ 1)1/(2x)
∼
(√

2πx
)− 1

2x(2x+1) exp

{
1

4x
+

1

16x2
− 11

96x3
+

31

384x4
− 547

11520x5

+
601

23040x6
− 4691

322560x7
+ · · ·

}
. (5.8)

Replacement of x by n/2 in (5.8) yields

Ω
1/n
n

Ω
1/(n+1)
n+1

∼
(√
nπ
)− 1

n(n+1) exp

{
1

2n
+

1

4n2
− 11

12n3
+

31

24n4
− 547

360n5

+
601

360n6
− 4691

2520n7
+ · · ·

}
(5.9)

and, by Lemma 2.1, we finally obtain the following asymptotic expansion as n→∞:

Ω
1/n
n

Ω
1/(n+1)
n+1

∼
(√
nπ
)− 1

n(n+1)

{
1 +

1

2n
+

3

8n2
− 37

48n3
+

115

128n4
− 13781

11520n5
+ · · ·

}
. (5.10)

Formula (5.8) motivated us to establish the following double inequality for Γ (x+ 3/2)
1/(2x+1)

/Γ(x+
1)1/(2x).

Theorem 5.2. For x ≥ 1/2,

(√
2πx

)− 1
2x(2x+1) exp

(
1

4x
+

1

16x2
− 11

96x3

)
<

Γ
(
x+ 3

2

)1/(2x+1)

Γ(x+ 1)1/(2x)

<
(√

2πx
)− 1

2x(2x+1) exp

(
1

4x
+

1

16x2
− 11

96x3
+

31

384x4

)
. (5.11)

Proof. In order prove the left-hand side of (5.11), it suffices to show that for x ≥ 1/2,

1

2x+ 1
ln

(
x+

1

2

)
+

1

2x+ 1
ln Γ

(
x+

1

2

)
− 1

2x
ln Γ(x+ 1)

+
1

2x(2x+ 1)
ln
√

2πx−
(

1

4x
+

1

16x2
− 11

96x3

)
> 0;
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that is,

u(x) := ln

(
x+

1

2

)
− ln

(
Γ(x+ 1)

Γ(x+ 1
2 )

)
− 1

2x

(
ln Γ(x+ 1)− ln

√
2πx

)
− (2x+ 1)

(
1

4x
+

1

16x2
− 11

96x3

)
> 0.

Similarly, to prove the right-hand side of (5.11), it suffices to show that for x ≥ 1/2,

v(x) := ln

(
x+

1

2

)
− ln

(
Γ(x+ 1)

Γ(x+ 1
2 )

)
− 1

2x

(
ln Γ(x+ 1)− ln

√
2πx

)
− (2x+ 1)

(
1

4x
+

1

16x2
− 11

96x3
+

31

384x4

)
< 0.

Using the inequalities (2.5) and (2.13), we obtain, for x ≥ 1/2,

u(x) > lnx+ ln

(
1 +

1

2x

)
−
(

1

2
lnx+

1

8x
− 1

192x3
+

1

640x5

)
− 1

2x

(
x lnx− x+

1

12x
− 1

360x3
+

1

1260x5

)
− (2x+ 1)

(
1

4x
+

1

16x2
− 11

96x3

)
= ln

(
1 +

1

2x

)
− 20160x5 − 5040x4 − 4830x3 − 56x2 + 63x+ 16

40320x6

>
1

2x
− 1

8x2
+

1

24x3
− 1

64x4
− 20160x5 − 5040x4 − 4830x3 − 56x2 + 63x+ 16

40320x6

=
2491

4 + 8491
2 (x− 1

2 ) + 9191(x− 1
2 )2 + 6510(x− 1

2 )3

40320x6
> 0

and

v(x) < lnx+ ln

(
1 +

1

2x

)
−
(

1

2
lnx+

1

8x
− 1

192x3

)
− 1

2x

(
x lnx− x+

1

12x
− 1

360x3

)
− (2x+ 1)

(
1

4x
+

1

16x2
− 11

96x3
+

31

384x4

)
= ln

(
1 +

1

2x

)
− 2880x3 − 720x2 + 240x+ 457

5760x4

<
1

2x
− 1

8x2
+

1

24x3
− 2880x3 − 720x2 + 240x+ 457

5760x4
= − 457

5760x4
< 0.

This completes the proof. �

Replacement of x by n/2 in (5.11) yields

(√
nπ
)− 1

n(n+1) exp

(
1

2n
+

1

4n2
− 11

12n3

)
<

Ω
1/n
n

Ω
1/(n+1)
n+1

<
(√
nπ
)− 1

n(n+1) exp

(
1

2n
+

1

4n2
− 11

12n3
+

31

24n4

)
, n ∈ N. (5.12)

The expansion (5.10) motivated us to establish the following sharp inequality for Ω
1/n
n /Ω

1/(n+1)
n+1 .
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Theorem 5.3. For n ∈ N, we have(√
nπ
)− 1

n(n+1)

(
1 +

1

2n− 4−3π1/4

2−π1/4

)
≤ Ω

1/n
n

Ω
1/(n+1)
n+1

<
(√
nπ
)− 1

n(n+1)

(
1 +

1

2n− 3
2

)
. (5.13)

The constants 4−3π1/4

2−π1/4 = 0.008963 . . . and 3
2 are the best possible.

Proof. First, we establish the left-hand inequality of (5.13). Elementary calculations show that
this is valid for for n = 1, 2 and 3. We now prove the left-hand inequality of (5.13) for n ≥ 4.
For this it suffices to show by appeal to (5.12) that

G(n) > 0 for n ≥ 4,

where

G(x) =
1

2x
+

1

4x2
− 11

12x3
− ln

(
1 +

1

2x− a

)
with a =

4− 3π1/4

2− π1/4
.

Differentiation yields

G′(x) = − P3(x− 4)

4x4(2x+ 1− a)(2x− a)
,

where

P3(x) = 29a2 − 493a+ 40 + (18a2 − 422a+ 234)x

+ (2a2 − 106a+ 104)x2 + (12− 8a)x3 > 0 for x ≥ 0.

We then obtain G′(x) < 0 for x ≥ 4. So, the sequence {G(n)} is strictly decreasing for n ≥ 4,
and we have

G(n) > lim
m→∞

G(m) = 0 for n ≥ 4.

This proves the left-hand inequality of(5.13) for n ≥ 1.
Now, we establish the right-hand inequality of (5.13). Elementary calculations show that this

is valid for n = 1. We now prove that the right-hand inequality of (5.13) holds for n ≥ 2. It
suffices to show by appeal to (5.12) that

g(n) < 0 for n ≥ 2,

where

g(x) =
1

2x
+

1

4x2
− 11

12x3
+

31

24x4
− ln

(
1 +

1

2x− 3
2

)
.

Differentiation yields

g′(x) =
692 + 2211(x− 2) + 2098(x− 2)2 + 606(x− 2)3

12x5(4x− 1)(4x− 3)
> 0 (x ≥ 2).

Hence, the sequence {g(n)} is strictly increasing for n ≥ 2, and we have

g(n) < lim
m→∞

g(m) = 0 for n ≥ 2.

This proves that the right-hand inequality o(5.13) for n ≥ 1.
If we write (5.13) as

4− 3π1/4

2− π1/4
≤ xn <

3

2
, xn = 2n−

(√nπ) 1
n(n+1) Ω

1/n
n

Ω
1/(n+1)
n+1

− 1

−1

,
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we find that

x1 =
4− 3π1/4

2− π1/4
and lim

n→∞
xn =

3

2
. (5.14)

The limit in (5.14) is obtained by using the asymptotic expansion (5.10). Hence, the inequality

(5.13) holds for n ≥ 1, and the constants 4−3π1/4

2−π1/4 and 3
2 are the best possible. �

Remark 5.1. Write (1.1) as(
4

π

)1/(2n)

≤ Ω
1/n
n

Ω
1/(n+1)
n+1

< e1/(2n). (5.15)

The inequalities (5.13) are sharper than the inequalities (5.15) for n ≥ 2.

References

[1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput. 66 (1997) 373–389.

[2] H. Alzer, Inequalities for the volume of the unit ball in Rn, J. Math. Anal. Appl. 252 (2000) 353–363.

[3] H. Alzer, Inequalities for the volume of the unit ball in Rn, II, Mediterr. J. Math. 5 (2008) 395–413.
[4] G.D. Anderson, S.-L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc. 125

(1997) 3355–3362.

[5] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Exposition.
Math. 7 (1989) 97–136.

[6] T. Ban, C.-P. Chen, New inequalities for the volume of the unit ball in Rn, J. Math. Inequal. 11 (2) (2017)

527–542.
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