Sheep and Goats: Manipulating Visual Perception through Colour Relationships
Ovejas y cabras: manipulando la percepción visual a través de las relaciones de color

David Lyons
David Flatla

This is the authors’ version of a paper presented at the Impact 10 Conference, 1-9 September 2019, Santander, Spain, and published in the Conference Proceedings.
Sheep and Goats: Manipulating visual perception through colour relationships

Visual messages are hidden in plain sight through investigating the idea that artwork can be intentionally created to be experienced differently dependent on one’s visual abilities. The diptych *Sheep and Goats* both communicate unique details to individuals with the colour vision deficiencies (CVD) known collectively as colour blindness, and contain imagery visible only to people with typical colour vision. All the artwork is revealed to the different audiences through the use of digital devices fitted with augmented reality CVD simulation and recolouring software.

Each print in the un-editioned diptych is 84 x 112 cm. Through colour manipulation, each communicates different details to individuals with CVD than to those with typical colour vision. Chevrons dominate for those with CVD. Bull’s eyes dominate for people with typical colour vision.

The prints rely on circular imagery influenced by the *Ishihara Test for Colour Deficiency* and overprinted lyrics from *Sheep Go to Heaven* by the rock band Cake. The colour palette consists of red, magenta, blue and green tints. The imagery is layered with the repeated song lyrics typeset in *Old Newspaper* and screen printed in varnish. The bottom quarter of each print has the print’s title typeset in *Old Newspaper*. The paper is *Somerset Velvet* 255 g, printed with *Ultra Chrome K3* inks using an *Epson 9800* inkjet printer. *TW Clear Gloss Base* was double screen-printed through a T140 mesh for the lyrics.

Both the imagery and text were chosen because of their overt dichotomies; the Ishihara Test is a tool to identify one as colour sighted or colour blind. The Cake song, seemingly inspired by the Biblical parable in *Matthew 25*, declares “sheep go to heaven, goats go to hell (Cake, 1998).”

The dualism of sheep/goats, heaven/hell, colour sighted/colour blind drove the development of the work, as did Ishihara’s idea of embedding different numbers for the typically sighted and those with CVD. The Ishihara Test, first published in 1917, consists of 38 plates that test for red/green CVDs. The test is used to determine red-green CVDs. CVDs affect about eight percent of the male population and half of one percent of the female population (Colour Blind Awareness 2017). In some of the Ishihara plates, different numerals are visible to viewers with and without reg/green CVD (Ishihara, 1917). *Sheep and Goats* seeks to do something similar. Each print, through the manipulation of colour, has a particular pattern visible for the typically colour sighted and a different pattern visible by those with CVD.

The lyrics of the Cake song are printed in clear varnish over the Ishihara imagery, and are intended to enforce the ideas of hidden messages and the dualist nature of
the work by appearing and disappearing according to the position of the viewer and the light source.

The contrast of dualism against the inclusiveness of audiences and the mysteries of hidden messages was deliberate and harks back to William Blake’s book, *The Marriage of Heaven and Hell*. Blake turns the dualistic Biblical proverb of the sheep and goats on its head by declaring that, “the lust of the goat is bounty of God” (Blake, 1790). In solidarity, dualism and the urge to classify and compartmentalize is opposed by *Sheep and Goats* through its diversity of audience perception and the revelations of the simulation software.

An understanding of how humans perceive colour underpins many of the techniques employed to develop these prints.

Human eyes perceive colour through three types of light receptor on the retina called cones. The three types of cone are distinguished by the wavelength of light that they respond optimally to; there are long wavelength, mid wavelength and short wavelength cones primarily detecting reds, greens and blues, respectively. When all three types of cone are functioning correctly we perceive the full spectrum of colours. If one set of cones does not function, colour perception is impacted and the range of visible colours is narrowed. In red/green CVD, either the medium wavelength cones or the long wavelength cones are dysfunctional and perception of reds and greens collapses along a blue/yellow axis, such that most reds and greens look like muddy yellow-browns. Colours like magenta look blue since the red in them is not perceptible.

This colour perception variation is used in the prints to create different visual experiences. Knowing how these two ways of perceived colour groupings interact with each other facilitated targeting of the different cohorts.

The colour and value contrasts that artists and designers use to help communicate visually are employed differently for the audiences. Artists know that the typically sighted tend to visually group warm colours (reds and magentas) and cool colours (blues and greens) separately. Thus, contrast for the typically sighted can be created using cool colours and warm colours. Those with red-green CVD exhibit different colour grouping preferences. They tend to group what those with normal sight view as red and green colours together because, to them, they all appear as muddy yellows. Similarly, blues and magentas are grouped together because they all appear blue. Colour contrasts for these audiences are most easily made using blues and yellows.

So, a pair of similar warm colours for the typically sighted is red and magenta. The contrasting cool colours are green and blue. For those with red-green CVD a pair of
similar colours are blue and magenta, which appears blue. A pair that is visually contrasting to them are red and green, which both appear as yellow-browns.

This colour perception variation was used in the prints to create different visual experiences. Grouping the colours strategically allowed the creation of visual messages to one audience that were camouflaged to the other.

To ensure that the prints were experienced differently dependent on visual ability, the imagery was tested on a self-identified red-green CVD cohort. Of the eight volunteers, two knew their CVD diagnosis. Both had variations of red-green CVD. For the test, each was emailed a JPG of a work in development and asked “Can you let me know if you see any letters, numbers or patterns in the image?” Once an intended pattern was firmly identified by a significant portion of the test group, the test was considered successful and that variant would become the final image for the print. Because of the similarity of the colour schemes used in the prints, only one image required this testing process.

Tablets loaded with CVD simulation and recolouring software were used to see the artwork differently. For this, a tablet based application was created that both simulates CVD and recolours for those with CVD, allowing them to appreciate a wider range of colours for this investigation.

The CVD simulation software emulates the collapsing of the visual colour spectrum experienced by those with CVD. A digital image of the artwork is captured by a tablet’s camera and viewed in real time. The software identifies colours in the digital image, pixel by pixel, and substitutes those colours for the ones they collapse to on the blue/yellow axis.

The recolouring for CVD software also acts on images captured by a tablet’s camera. It rotates the red-green-blue (RGB) colour representation used by the device to green-blue-red. Consequently, red becomes green, green becomes blue and blue becomes red. For example, suppose an image contains red strawberries against green foliage. The recolouring tool maps the colour of the leaves and berries to a colour combination that is more differentiable for someone with CVD (i.e., red leaves and blue berries). This introduction of a false colouring scheme helps restore the perception of colour differences for people with CVD (Lyons and Flatla 2014).

Audience response
Sheep and Goats was exhibited as part of Generation, a Scotland wide Commonwealth celebration of contemporary visual art in 2015 and Print Festival Scotland in 2016. During its exhibition, audiences interacted with the art differently, as expected. The general tone of comments was that of enjoyment. The titles of the
prints generated many positive comments as did the interaction spurred by the software.

Attendees with normal vision were first engaged by familiar imagery of the work and the changing surface texture resultant from the varnish printed text. When using the tablets containing the CVD simulation software the comments “this is very interesting” and “I never know things looked so different for the colour blind”, were noted.

For those in attendance with CVD, there was a sense of delight, particularly prevalent once they were prompted to ask others with typical colour sight to discuss what was seen in the prints, and then use the software on the tablets to translate their experiences between each other. One couple in particular became very engaged in the prints and the software/tablet translations, she of typical colour vision and he with CVD. In conversation, it was learnt that their vision differences were of interest to them throughout their relationship. And, according to them, the exhibition had been a strong step towards an understanding of each other’s perceptual experiences.

In Conclusion
Through the use and understanding of colour, artistic principles and computer science applications, a diptych print was planned and executed that had specific elements apparent only to targeted audiences of specific visual abilities.

The words and images used in the art had a connection to the intent of the project and gave indications to the underlying purpose of their creation.

Tablets loaded with bespoke simulation and recolouring applications allowed sharing those elements with larger audiences. Using these devices, those with typical colour vision were able to perceive aspects of the work specifically designed to be visible only to those with CVD. And, using the same tablets, those with CVD were able to detect aspects of the artwork that would typically be hidden from them.

The ability to embed these multiple interpretations within the same pieces has been sufficiently satisfying, though not unworthy of future investigation, as has developing tools giving viewers an understanding of how others might see the work.

It is hoped the application of the techniques developed can be refined to create a diversity of imagery with applications beyond that which is presented here.

REFERENCES:
Blake, William. *The Marriage of Heaven and Hell*. Copy D, 1795
Ovejas y cabras: manipulando la percepción visual a través de las relaciones de color

Los mensajes visuales se ocultan a la vista al investigar la idea de que las obras de arte se pueden crear intencionalmente para que se experimenten de forma diferente en función de las capacidades visuales. El diptico Sheep and Goat comunica detalles únicos a las personas con problemas de visión del color (CVD, por sus siglas en inglés) conocidas colectivamente como daltonismo, y contiene imágenes visibles solo para personas con visión de color típica. Toda la obra de arte se revela a las diferentes audiencias a través del uso de dispositivos digitales equipados con software de simulación y reposición CVD de realidad aumentada.

Cada impresión en el diptico sin editar es de 84 x 112 cm. A través de la manipulación del color, cada uno comunica diferentes detalles a las personas con ECV que a aquellos con visión de color típica. Los Chevrons dominan para aquellos con CVD. Los ojos de Bull dominan para las personas con visión de color típica.

Las copias se basan en imágenes circulares influenciadas por la prueba de deficiencia de color de Ishihara y cartas sobreejepadas de Sheep Go to Heaven por la banda de rock Cake. La paleta de colores consiste en tintes rojo, magenta, azul y verde. Las imágenes se superponen a las letras de las canciones repetidas compuestas en el periódico antiguo e impresas en barniz. El cuarto inferior de cada impresión tiene el tipo de título impreso en el periódico viejo. El papel es Somerset Velvet 255 g, impreso con tintas Ultra Chrome K3 con una impresora de inyección de tinta Epson 9800. TW Clear Gloss Base se imprimió con una doble pantalla a través de una malla T140 para las letras.

Tanto la imagen como el texto fueron elegidos debido a sus dicotomías manifiestas; la Prueba Ishihara es una herramienta para identificar a uno como colorino o daltónico. La canción de Cake, aparentemente inspirada en la parábola bíblica de Mateo 25, declara que "las ovejas van al cielo, las cabras van al infierno" (Cake, 1998).
El dualismo de las ovejas / cabras, el cielo / infierno, el color avistado / daltónico condujo el desarrollo del trabajo, al igual que la idea de Ishihara de incrustar diferentes números para los videntes y aquellos con ECV. La Prueba Ishihara, publicada por primera vez en 1917, consta de 38 placas que prueban las ECV rojas / verdes. La prueba se usa para determinar las ECV rojo-verde. Las ECV afectan aproximadamente al ocho por ciento de la población masculina y la mitad al uno por ciento de la población femenina (Color Blind Awareness 2017). En algunas de las placas de Ishihara, los diferentes números son visibles para los espectadores con y sin CVD verde (Ishihara, 1917). Sheep and Goats busca hacer algo similar. Cada impresión, a través de la manipulación del color, tiene un patrón particular visible para el color típicamente visto y un patrón diferente visible por aquellos con CVD.

Las letras de la canción Cake están impresas en barniz claro sobre las imágenes de Ishihara, y están destinadas a reforzar las ideas de los mensajes ocultos y la naturaleza dualista de la obra al aparecer y desaparecer de acuerdo con la posición del espectador y la fuente de luz.

El contraste del dualismo con la inclusión del público y los misterios de los mensajes ocultos fue deliberado y se remonta al libro de William Blake, The Marriage of Heaven and Hell. Blake convierte el proverbio dualístico bíblico de las ovejas y las cabras en su cabeza al declarar que "la lujuria de la cabra es una recompensa de Dios" (Blake, 1790). En solidaridad, el oprobio y el impulso de clasificar y compartimentar se opone a las ovejas y cabras a través de su diversidad de percepción del público y las revelaciones del software de simulación.

La comprensión de cómo los humanos perciben el color es la base de muchas de las técnicas empleadas para desarrollar estas impresiones.

Los ojos humanos perciben el color a través de tres tipos de receptores de luz en la retina llamados conos. Los tres tipos de cono se distinguen por la longitud de onda de la luz a la que responden de manera óptima; hay longitudes de onda largas, longitudes de onda medias y conos de longitud de onda corta que detectan principalmente rojos, verdes y azules, respectivamente. Cuando los tres tipos de cono funcionan correctamente, percibimos el espectro completo de colores. Si un conjunto de conos no funciona, la percepción del color se ve afectada y el rango de colores visibles se reduce. En CVD rojo / verde, los conos de longitud de onda mediana o los conos de longitud de onda larga son disfuncionales y la percepción de rojos y verdes se derrumba a lo largo de un eje azul / amarillo, de modo que la mayoría de los rojos y verdes se ven como marrones amarillentos fangosos. Los colores como el magenta se ven azules ya que el rojo en ellos no es perceptible.

Esta variación de percepción del color se usa en las impresiones para crear diferentes experiencias visuales. Saber cómo estas dos formas de agrupaciones de color percibidas interactúan entre sí facilitó la selección de las diferentes cohortes.
El color y el valor que los artistas y diseñadores usan para ayudar a comunicarse visualmente se emplean de manera diferente para el público. Los artistas saben que las personas con visión típica tienden a agrupar visualmente colores cálidos (rojos y magentas) y colores fríos (azules y verdes) por separado. Por lo tanto, el contraste para las personas con visión típica se puede crear usando colores fríos y colores cálidos. Aquellos con CVD rojo-verde exhiben diferentes preferencias de agrupación de color. Tienden a agrupar lo que aquellos con vista normal ven como colores rojo y verde juntos porque, para ellos, todos aparecen como amarronados fangosos. De forma similar, los azules y las magentas se agrupan porque todos aparecen en azul. Los contrastes de color para estas audiencias se hacen más fácilmente usando azules y amarillos.

Por lo tanto, un par de colores cálidos similares para las personas con visión típica es rojo y magenta. Los colores fríos contrastantes son verdes y azules. Para aquellos con CVD rojo-verde, un par de colores similares son azul y magenta, que parece azul. Un par que contrasta visualmente con ellos es rojo y verde, que ambos aparecen como marrones amarillos.

Esta variación de la percepción del color se utilizó en las impresiones para crear diferentes experiencias visuales. Agrupar los colores estratégicamente permitió la creación de mensajes visuales para una audiencia que estaban camuflados a la otra.

Para garantizar que las impresiones se experimentaran de forma diferente según la capacidad visual, las imágenes se prueban en una cohorte CVD rojo-verde autoidentificada. De los ocho voluntarios, dos sabían su diagnóstico de ECV. Ambos tenían variaciones de CVD rojo-verde. Para la prueba, a cada uno se le envió por correo electrónico un JPG de un trabajo en desarrollo y se le preguntó "¿Puede decirme si ve letras, números o patrones en la imagen?". Una vez que un patrón intencionado estaba firmemente identificado por una parte importante del grupo, la prueba se consideró exitosa y esa variante se convertiría en la imagen final para la impresión. Debido a la similitud de los esquemas de color utilizados en las impresiones, solo una imagen requirió este proceso de prueba.

Se usaron tabletas cargadas con software de simulación y recoloración de CVD para ver la obra de arte de manera diferente. Para esto, se creó una aplicación basada en tabletas que simula CVD y se repite para aquellos con CVD, lo que les permite apreciar una gama más amplia de colores para esta investigación.

El software de simulación CVD simula el colapso del espectro de color visual experimentado por aquellos con CVD. Una imagen digital de la obra de arte es capturada por la cámara de una tableta y vista en tiempo real. El software identifica
los colores en la imagen digital, pixel por pixel, y los sustituye por los que colapsan en el eje azul / amarillo. El cambio de color para el software CVD también actúa sobre las imágenes capturadas por la cámara de una tableta. Gira la representación de color rojo-verde-azul (RGB) utilizada por el dispositivo a verde-azul-rojo. En consecuencia, el rojo se vuelve verde, el verde se vuelve azul y el azul se vuelve rojo. Por ejemplo, supongamos que una imagen contiene fresas rojas contra el follaje verde. La herramienta de cambio de color asigna el color de las hojas y bayas a una combinación de colores que es más diferenciable para una persona con ECV (es decir, hojas rojas y bayas azules). Esta introducción de un esquema de coloración falsa ayuda a restaurar la percepción de las diferencias de color para las personas con ECV (Lyons y Flatla 2014). Respuesta de la audiencia Sheep and Goats se exhibió como parte de Generation, una celebración de la Commonwealth de Escocia de arte visual contemporáneo en 2015 y Print Festival Scotland en 2016. Durante su exposición, el público interactuó con el arte de manera diferente, como se esperaba. El tono general de los comentarios fue el de disfrute. Los títulos de las impresiones generaron muchos comentarios positivos al igual que la interacción impulsada por el software. Los asistentes con visión normal se involucraron primero mediante imágenes familiares del trabajo y la textura cambiante de la superficie resultante del texto impreso del barniz. Al utilizar las tabletas que contienen el software de simulación de CVD, se señalaron los comentarios "esto es muy interesante" y "nunca he visto que las cosas se vean tan diferentes para los daltónicos". Para aquellos que asistieron con CVD, hubo una sensación de deleite, particularmente prevaleciente una vez que se les pidió que preguntaran a los demás con una visión cromática típica para discutir lo que se veía en las impresiones, y luego usar el software en las tabletas para traducir sus experiencias entre otro. Una pareja en particular se interesó mucho en las impresiones y las traducciones de software / tableta, ella de visión de color típica y él con CVD. En la conversación, se supo que sus diferencias de visión les interesaban a lo largo de su relación. Y, según ellos, la exposición había sido un gran paso hacia la comprensión de las experiencias perceptivas de los demás.

En conclusión
Mediante el uso y la comprensión del color, los principios artísticos y las aplicaciones informáticas, se planificó y ejecutó una impresión díptica que tenía elementos específicos aparentes solo para audiencias específicas de habilidades visuales específicas.

Las palabras e imágenes utilizadas en el arte tenían una conexión con la intención del proyecto y daban indicaciones para el propósito subyacente de su creación.

Las tabletas cargadas con simulación personalizada y aplicaciones de recoloración permitieron compartir esos elementos con audiencias más grandes. Usando estos dispositivos, aquellos con visión de color típica pudieron percibir aspectos del trabajo específicamente diseñados para ser visibles solo para aquellos con ECV. Y,
usando las mismas tabletas, aquellos con CVD pudieron detectar aspectos de la obra de arte que normalmente se les ocultarían.

La capacidad de integrar estas múltiples interpretaciones dentro de las mismas piezas ha sido lo suficientemente satisfactoria, aunque no indigna de futuras investigaciones, como lo ha sido el desarrollo de herramientas que ofrezcan a los espectadores una comprensión de cómo otros podrían ver el trabajo.

Se espera que la aplicación de las técnicas desarrolladas se refíne para crear una diversidad de imágenes con aplicaciones más allá de lo que se presenta aquí.

REFERENCIAS:
Blake, William. El matrimonio del cielo y el infierno. Copia D, 1795