The stock-flow-service nexus of Bogotá’s bus rapid transit

Gabriel Carmona
Kai Whiting
Edward Simpson

This presentation was presented on 7th July 2020 at the International Society for Industrial Ecology Conference: Industrial Ecology for Resilient and Sustainable Cities: Enhancing circularity and wellbeing (ISIE Americas 2020), 6-8 July 2020
The stock-flow-service nexus of Bogotá’s Bus Rapid Transit

Gabriel Carmona
Kai Whiting
Edward Simpson
Introduction

- Socioeconomic development relies on natural resources, including in-use stocks in the form of products and infrastructure.
- Services are provided by specific combinations of material stocks and flows.

Source: Haberl et al (2019)
Stock-flow-service nexus

- It captures the interconnections between material and energy flows, material stocks and the services that resources directly provide.
- Opens up a systems-based understanding of resource use.
- The interactions are not necessarily linear or commensurable, and can be expressed as efficiencies or rates.

Source: Adapted from Carmona et al (2020)
Stock-Flow-Service Indicators

Interactions

- Service delivery
- Stock maintenance
- Stock expansion (contraction)
- Stock or flow degradation
- Stock or flow embodied impact

Components

- Service-Flow
- Service-Stock
- Flow-Stock
- Service-Flow
- Flow-Stock
- Flow-Flow

Examples

- Flow efficiency
- Stock efficiency
- Material replacement flows
- Capital-augmented Mat. Footprint
- Emission efficiency
- Embodied impact of stock
- Resource efficiency
Bogota’s BRT
Method

Scope: Operations prior to stock optimisation strategy (2001-2007) and operations following stock optimisation strategy (2008-2011)

Quantifying Flows: Fuel consumption, vehicle spare parts and waste flows

Quantifying Stocks: 125 bi-articulates buses Euro II

Quantifying the Transport Service: kilometres

![Service parameters diagram](image)

- Safety
- Opportunity
- Kilometres
- Cleanliness
- Continuity
- User satisfaction
- Conformity
Stock-Flow-Service Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
<th>General Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock efficiency</td>
<td>The amount of stock required to provide a unit of service</td>
<td>(\frac{\text{Serv.}}{M_{\text{Stock}}})</td>
</tr>
<tr>
<td>Flow efficiency</td>
<td>The amount of inflow that is directly consumed to provide a unit of service</td>
<td>(\frac{\text{Serv.}}{M_{\text{Inflow}}})</td>
</tr>
<tr>
<td>Stock degradation efficiency</td>
<td>The amount of stock that degrades (worn out/made obsolete) to provide a unit of service</td>
<td>(\frac{\text{Serv.}}{M_{\text{Outflow}}})</td>
</tr>
<tr>
<td>Stock maintenance rate</td>
<td>Fraction of material required to maintain stock at a specified level</td>
<td>(\frac{M_{\text{Outflow}}}{M_{\text{Stock}}})</td>
</tr>
<tr>
<td>Stock evolution range (IQR)</td>
<td>Distance between first and third quartile of the different elements that constitute the stock</td>
<td>(Q_3 - Q_1)</td>
</tr>
</tbody>
</table>
Results

Service, flow and stock variables

A. Service

B. Inflow (Diesel)

C. Stock

D. Outflow (Waste)
Results

Nexus indicator performance

A. Fuel efficiency

B. Stock efficiency

C. Stock maintenance rate

D. Stock degradation efficiency
Normalisation

IQR vs Fuel Efficiency

- Fuel efficiency (km/gal)
- IQR (km)
- Stock optimization*

Fuel efficiency (km/L)

IQR (Mm)

Fuel efficiency
Stock efficiency
Stock degradation efficiency
Stock maintenance rate
IQR
Stock optimization*
Provides a more comprehensive view of resources that does not overemphasise production aspects at the expense of understanding how resources are used and the extent of which they contribute to services.
Concluding remarks

• How can the nexus concept help us understand the connection between stocks, flows and services?
 – Visualise more clearly the role of materials in society, and the interdependency between the three components of the nexus.
 – Increase awareness regarding the importance of material stocks, how they drive flows (and vice versa) and, by extension, help to determine service quality.

• What do our results mean for the sustainable policy?
 – Better understanding of where, and to what extent, an organisation’s physical assets are contributing to strategic goals, such as the optimisation of in-use fleet.
 – Help transport authorities and operators to establish evidence-based targets
Bibliography

Thank you :)

Any questions?

gabrielcarmona@tecnico.ulisboa.pt