Chao-Ping Chen and Richard B. Paris

An inequality involving the constant e and a generalized Carleman-type inequality
AIMS AND SCOPE
Mathematical Inequalities & Applications (MIA, Math. Inequal. Appl.) brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time MIA will publish invited survey articles. Short notes with interesting results or open problems will also be accepted.

MIA is published quarterly, in January, April, July and October.

SUBMISSION
Manuscripts should be submitted electronically in PostScript or Adobe Acrobat PDF format to the MIA Editorial Office through MIA page: www.ele-math.com or by e-mail mia@ele-math.com

The author who submitted the article for publication will be denoted as a corresponding author. He/She manages all communication and correspondence with the MIA regarding the article. Authors may indicate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not assured.

In order to facilitate refereeing, copies of those papers (whether by the author or someone else) which are essential and referred to in the manuscript but are not conveniently accessible, should be enclosed.

COPYRIGHT
The acceptance of the article automatically implies the copyright transfer to MIA. Manuscripts are accepted for review with the understanding that the same work has not been published (except in the form of an abstract), that it is not under consideration for publication elsewhere, that it will not be submitted to another journal, and that its submission for publication has been approved by all the authors.

PREPARATION OF MANUSCRIPT
Manuscripts should be written in English.

The publisher strongly encourages submission of manuscripts written in TeX or one of its variants LaTeX, AMSTeX or AMSLaTeX. On acceptance of the paper, authors will be asked to send final version of file(s) to the Editorial Office.

MIA is published by Publishing House ELEMENT, Zagreb, Croatia.

The publication of this journal is not supported by Ministry of science, education and sports, Croatia

All correspondence and subscription orders should be addressed to the Editorial Office:

Mathematical Inequalities & Applications
Editorial Office
Menceticeva 2, 10000 Zagreb, Croatia
www.ele-math.com
e-mail: mia@ele-math.com
Fax: +385 1 6008799

The content of this publication is indexed in Mathematical Reviews, Zentralblatt für Mathematik, Реферативный журнал – Математика, Scopus and Science Citation Index-Expanded.
AN INEQUALITY INVOLVING THE CONSTANT e AND A GENERALIZED CARLEMAN–TYPE INEQUALITY

CHAO-PING CHEN AND RICHARD B. PARIS

(Communicated by I. Perić)

Abstract. In this paper, we establish a double inequality involving the constant e. As an application, we give a generalized Carleman-type inequality.

1. Introduction

Let $a_n \geq 0$ for $n \in \mathbb{N} := \{1, 2, \ldots\}$ and $0 < \sum_{n=1}^{\infty} a_n < \infty$. Then

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} a_n. \quad (1.1)$$

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [3] by the Swedish mathematician Torsten Carleman and it is called Carleman’s inequality. Carleman discovered this inequality during his important work on quasi-analytical functions.

Carleman’s inequality (1.1) was generalized by Hardy [12] (see also [13, p. 256]) as follows: If $a_n \geq 0$, $\lambda_n > 0$, $\Lambda_n = \sum_{m=1}^{n} \lambda_m$ for $n \in \mathbb{N}$, and $0 < \sum_{n=1}^{\infty} \lambda_n a_n < \infty$, then

$$\sum_{n=1}^{\infty} \lambda_n (a^{\lambda_1}_1 a^{\lambda_2}_2 \cdots a^{\lambda_n}_n)^{1/\Lambda_n} < e \sum_{n=1}^{\infty} \lambda_n a_n. \quad (1.2)$$

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted Carleman-type inequality. In his original paper [12], Hardy himself said that it was Pólya who pointed out this inequality to him. For information about the history of Carleman-type inequalities, please refer to [15, 16, 18, 24].

In [4, 5, 6, 9, 10, 11, 14, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31], some strengthened and generalized results of (1.1) and (1.2) have been given by estimating the weight coefficient $(1 + 1/n)^n$. For example, Mortici and Jang [23] proved that for $0 < x \leq 1$,

$$e \left(1 - \frac{1}{2} x + \frac{11}{24} x^2 - \frac{7}{16} x^3 + \frac{2447}{5760} x^4 - \frac{959}{2304} x^5\right) < (1 + x)^{1/x}$$

$$< e \left(1 - \frac{1}{2} x + \frac{11}{24} x^2 - \frac{7}{16} x^3 + \frac{2447}{5760} x^4\right). \quad (1.3)$$

Keywords and phrases: Carleman’s inequality, weight coefficient.

This work was supported by Key Science Research Project in Universities of Henan (20B110007).
According to Pólya’s proof of (1.1) in [25],
\[\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} \leq \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n a_n, \]
(1.4)
and then the following strengthened Carleman’s inequality can be derived directly from the right-hand side of (1.3):
\[\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(1 - \frac{1}{2n} + \frac{11}{24n^2} - \frac{7}{16n^3} + \frac{2447}{5760n^4}\right) a_n. \]
(1.5)

In this paper, we develop the double inequality (1.3) to produce a general result. As an application, we give a generalized Carleman-type inequality.

2. A double inequality involving the constant \(e \)

Brothers and Knox [2] (see also [17, 7]) derived, without a formula for the general term, the following expansion:
\[\left(1 + \frac{1}{x}\right)^x = e \left(1 - \frac{1}{2x} + \frac{11}{24x^2} - \frac{7}{16x^3} + \frac{2447}{5760x^4} - \frac{959}{2304x^5} + \frac{238043}{580608x^6} - \cdots \right) \]
(2.1)
for \(x < -1 \) or \(x \geq 1 \). Chen and Choi [7] gave an explicit formula for successively determining the coefficients. More precisely, these authors proved that
\[\left(1 + \frac{1}{x}\right)^x \sim e \sum_{j=0}^{\infty} (-1)^j b_j x^{-j} \quad (x \to \infty), \]
(2.2)
where the coefficients \(b_j \) are given by
\[b_0 = 1 \quad \text{and} \quad b_j = \sum_{k_1+2k_2+\cdots+jk_j=j} \frac{\left(\frac{1}{2}\right)^{k_1} \left(\frac{1}{3}\right)^{k_2} \cdots \left(\frac{1}{j+1}\right)^{k_j}}{k_1!k_2!\cdots k_j!} \]
(2.3)
summed over all nonnegative integers \(k_j \) satisfying the equation \(k_1 + 2k_2 + \cdots + jk_j = j \).

A recurrence relation for the coefficients \(b_j \) can be obtained by use of the result given in [8, Lemma 3]. This states that for a function \(A(x) \) with asymptotic expansion \(A(x) \sim \sum_{n=1}^{\infty} \alpha_n x^{-n} \) as \(x \to \infty \), the composition \(B(x) = \exp[A(x)] \) has the expansion \(B(x) \sim \sum_{n=1}^{\infty} \beta_n x^{-n} \) as \(x \to \infty \), where \(\beta_0 = 1 \) and
\[\beta_n = \frac{1}{n} \sum_{k=1}^{n} k \alpha_k \beta_{n-k} \quad (n \geq 1). \]

From the Maclaurin expansion
\[\frac{1}{x} \ln(1 + x) = 1 + \sum_{j=1}^{\infty} \frac{(-1)^j x^j}{j+1} \quad (-1 < x \leq 1), \]
it therefore follows (upon replacing \(x \) by \(1/x \)) that the coefficients \(b_j \) in (2.2) are given by the recurrence relation

\[
b_0 = 1 \quad \text{and} \quad b_j = \frac{1}{j} \sum_{k=1}^{j} \frac{k}{k+1} b_{j-k} \quad (j \geq 1).
\]

(2.4)

Use of (2.4) is easily seen to generate the values

\[
b_1 = \frac{1}{2}, \quad b_2 = \frac{11}{24}, \quad b_3 = \frac{7}{16}, \quad b_4 = \frac{2447}{5760}, \quad b_5 = \frac{959}{2304}, \quad b_6 = \frac{238043}{580608} \ldots,
\]

which are the same coefficients as in (2.1). The representation using a recursive algorithm for the coefficients \(b_j \) is more practical for numerical evaluation than the expression in (2.3).

The above result immediately shows that \(b_j > 0 \) so that (2.2) is an alternating series for positive \(x \). Replacement of \(x \) by \(1/x \) in (2.1) and (2.2) then enables us to write

\[
(1 + x)^{1/x} = e \sum_{j=0}^{\infty} (-1)^j b_j x^j \quad (1 < x \leq 1).
\]

(2.5)

We now establish a monotonicity property satisfied by the coefficients \(b_j \).

Lemma 2.1. The sequence \(\{b_j\}_{j=0}^{\infty} \) in (2.5) is monotonically decreasing.

Proof. By Cauchy’s theorem it follows from (2.5) that

\[
b_j = \frac{(-1)^j}{2\pi i} \oint_C (1+t)^{1/t} \frac{dt}{t^{j+1}},
\]

where \(C \) is a closed loop surrounding \(t = 0 \) described in the positive sense. Define

\[
\Delta_j = b_j - b_{j+1}.
\]

Then

\[
\Delta_j = \frac{(-1)^j}{2\pi i} \oint_C (1+t)^{1/t} \left(1 + \frac{1}{t}\right) \frac{dt}{t^{j+1}} = \frac{(-1)^j}{2\pi i} \oint_C (1+t)^{1+1/t} \frac{dt}{t^{j+2}}.
\]

In the \(t \)-plane there is a branch cut along \((-\infty, -1]\). Now expand \(C \) to be a large circle of radius \(R \) that is indented to pass along the upper and lower sides of the branch cut. The contribution from the large circle tends to zero as \(R \to \infty \). Similarly, the contribution round the branch point \(t = -1 + \rho e^{i\theta}, \ -\pi \leq \theta \leq \pi \) vanishes as \(\rho \to 0 \). Then we have upon putting \(t = xe^{\pm \pi i} \) on the upper and lower sides of the branch cut

\[
\Delta_j = \frac{1}{2\pi i} \int_{-\infty}^{1} (x-1)^{1-1/x} e^{-\pi i/x} \frac{dx}{x^{j+2}} + \frac{1}{2\pi i} \int_{1}^{\infty} (x-1)^{1-1/x} e^{\pi i/x} \frac{dx}{x^{j+2}} = \frac{1}{\pi e} \int_{1}^{\infty} (x-1)^{1-1/x} \sin(\pi/x) \frac{dx}{x^{j+2}}.
\]

(2.6)
Now on the interval \(x \in [1, \infty)\) the function \(\sin(\pi/x) \geq 0\) so that the integrand in (2.6) is non-negative on \([1, \infty)\). Hence \(\Delta_j > 0\) and the sequence \(\{b_j\}_{j=0}^{\infty}\) is monotonically decreasing. This completes the proof.

Remark 2.1. We thank a referee for providing the literature [1]. It was proved in [1, Lemma 1] that

\[
(x + 1) \left[e - \left(1 + \frac{1}{x} \right)^x \right] = \frac{e}{2} + \int_0^1 \frac{g(s)}{x + s} \, ds \quad (x > 0),
\]

where

\[
g(s) = \frac{1}{\pi} s^t (1 - s)^{1-s} \sin(\pi s) \quad (0 \leq s \leq 1).
\]

By (2.7), we here give an integral representation of the coefficients \(b_j\) in (2.5), and then use it to prove Lemma 2.1.

Write (2.7) as

\[
\left(1 + \frac{1}{x} \right)^x = e - \frac{e}{2(x + 1)} - \int_0^1 \frac{g(s)}{(x + 1)(x + s)} \, ds \quad (x > 0).
\]

Replacing \(x\) by \(1/t\) in (2.9) yields, for \(t > 0\),

\[
f(t) := (1 + t)^{1/t} = \frac{e}{2} + \frac{e}{2(t + 1)} - \int_0^1 \frac{g(s)}{s} \left\{ 1 + \frac{s}{(1-s)(t+1)} - \frac{1}{s(1-s)(t+\frac{1}{s})} \right\} \, ds.
\]

Clearly,

\[eb_0 = f(0) = e.\]

Differentiating the expression in (2.10), we find that for \(n \geq 1\),

\[
\frac{(-1)^n f^{(n)}(t)}{n!} = \frac{e}{2(t + 1)^{n+1}} - \int_0^1 \frac{g(s)}{s} \left\{ \frac{s}{(1-s)(t+1)^{n+1}} - \frac{1}{s(1-s)(t+\frac{1}{s})^{n+1}} \right\} \, ds,
\]

we then obtain the following integral representation of the coefficients \(b_j\) in (2.5):

\[
b_n = \frac{(-1)^n f^{(n)}(0)}{n! e} = \frac{1}{2} - \frac{1}{e} \int_0^1 \frac{1 - s^{n-1}}{1 - s} g(s) \, ds
\]

for \(n \geq 1\), and we have

\[
\Delta_j = b_j - b_{j+1} = \frac{1}{e} \int_0^1 s^{j-1} g(s) \, ds > 0 \quad (j \geq 1).
\]

Noting that \(b_0 = 1 > \frac{1}{2} = b_1\) holds, we see that the sequence \(\{b_j\}_{j=0}^{\infty}\) in (2.5) is monotonically decreasing.

In fact, by an elementary change of variable \(x = 1/s\) \((0 \leq s \leq 1)\), we see that (2.6) \(\iff\) (2.11).
From (2.5) and Lemma 2.1 we obtain the following theorem that develops the double inequality (1.3) to produce a general result.

Theorem 2.1. For all integers \(m \geq 0 \),

\[
e^{2m+1} \sum_{j=0}^{2m+1} (-1)^j b_j x^j < (1+x)^{1/x} < e^{2m} \sum_{j=0}^{2m} (-1)^j b_j x^j \quad (0 < x \leq 1),
\]

(2.12)

or alternatively

\[
e^{2m+1} \sum_{j=0}^{2m+1} (-1)^j b_j x^j \quad (x \geq 1),
\]

(2.13)

where the coefficients \(b_j \) are given by the recursive relation (2.4).

3. A generalized Carleman-type inequality

Theorem 3.1. Let \(0 < \lambda_{n+1} \leq \lambda_n \), \(\Lambda_n = \sum_{m=1}^{n} \lambda_m \) (\(\Lambda_n \geq 1 \)), \(a_n \geq 0 \) (\(n \in \mathbb{N} \)) and \(0 < \sum_{n=1}^{\infty} \lambda_n a_n < \infty \). Then for \(0 < p \leq 1 \),

\[
\sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/\Lambda_n} \quad \leq \quad \frac{e^p}{p} \sum_{n=1}^{\infty} \left(\frac{2m}{\sum_{j=0}^{m} (-1)^j b_j} \right)^p \lambda_n a_n^p \Lambda_n^{p-1} \left(\sum_{k=1}^{n} \lambda_k (c_k a_k)^p \right)^{(1-p)/p},
\]

(3.1)

where \(b_j \) is given by (2.4), and

\[
c_{\lambda_n}^p = \frac{(\Lambda_{n+1})^{\lambda_n}}{\left(\Lambda_n\right)^{\lambda_{n-1}}}.\]

Proof. The following inequality:

\[
\sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/\Lambda_n} \quad \leq \quad \frac{1}{p} \sum_{m=1}^{\infty} \left(1 + \frac{1}{\lambda_m} \right)^{p_{\lambda_m} / \lambda_m} \lambda_m a_m^p \Lambda_m^{p-1} \left(\sum_{k=1}^{m} \lambda_k (c_k a_k)^p \right)^{(1-p)/p},
\]

(3.2)

has been proved in Theorem 2.2 of [11] (see also [21, p. 96]). From (3.2) and the right-hand side of (2.13), we obtain (3.1). The proof is complete.

Remark 3.1. In Theorem 2.2 of [11], \(c_{\lambda_n}^p = \frac{(\Lambda_{n+1})^{\lambda_n}}{(\Lambda_n)^{\lambda_{n-1}}} \) should be \(c_{\lambda_n}^p = \frac{(\Lambda_{n+1})^{\lambda_n}}{(\Lambda_n)^{\lambda_{n-1}}} \); see [11, p. 44, line 3]. Likewise, \(c_{\lambda_n}^p = \frac{(\Lambda_{n+1})^{\lambda_n}}{(\Lambda_n)^{\lambda_{n-1}}} \) in Theorem 3.1 of [21] should be \(c_{\lambda_n}^p = \frac{(\Lambda_{n+1})^{\lambda_n}}{(\Lambda_n)^{\lambda_{n-1}}} \); see [21, p. 96, Eq. (9)].
The choice $p = 1$ in (3.1) yields
\[\sum_{n=1}^{\infty} \lambda_n^{-1} (a_1 \lambda_n^{-1} + a_2 \lambda_n^{-2} + \cdots + a_n \lambda_n^{-n}) < e \sum_{n=1}^{\infty} \left(\sum_{j=0}^{2m} (-1)^j b_j \left(\frac{\lambda_n}{\lambda_j} \right)^j \right) \lambda_n a_n. \] (3.3)

Taking $\lambda_n \equiv 1$ in (3.3) we obtain
\[\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(\sum_{j=0}^{2m} \frac{(-1)^j b_j}{n^j} \right) a_n. \] (3.4)

When $m = 2$ in (3.4) we recover (1.5).

REFERENCES

[12] G. H. Hardy, Notes on some points in the integral calculus, Messenger of Math. 54 (1925), 150–156.

(Received November 12, 2016)

Chao-Ping Chen
School of Mathematics and Informatics
Henan Polytechnic University
Jiaozuo City 454000, Henan Province, China
e-mail: chenchaoping@sohu.com

Richard B. Paris
Division of Computing and Mathematics
University of Abertay
Dundee, DD1 1HG, UK
e-mail: R.Paris@abertay.ac.uk