Time-course of \(\dot{V}O_2 \) kinetics responses during moderate-intensity exercise subsequent to HIIT vs moderate-intensity continuous training in type 2 diabetes

Norita Gildea
Adam McDermott
Joel Rocha
Donal O’Shea
Simon Green
Mikel Egaña
TITLE

Time-course of $\dot{V}O_2$ kinetics responses during moderate-intensity exercise subsequent to HIIT vs moderate-intensity continuous training in type 2 diabetes.

AUTHORS

Norita Gildea1, Adam McDermott1, Joel Rocha2, Donal O’Shea3,4, Simon Green5, Mikel Egaña1

AFFILIATIONS & ADDRESSES

1Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
2Division of Sport and Exercise Sciences, Abertay University, Dundee, UK.
3Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.
4Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland.
5Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia.

CONTACT INFORMATION (corresponding author):

Mikel Egaña
Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
E-mail: megana@tcd.ie; Telephone: +353 1 896 1770; Fax: +353 1 679 3545

RUNNING HEAD:

Low-volume HIIT vs MICT on $\dot{V}O_2$ kinetics in type 2 diabetes

NEW AND NOTEWORTHY
High-intensity interval training and moderate-intensity continuous training elicited faster pulmonary oxygen uptake (\(\dot{V}O_2\)) kinetics during moderate-intensity cycling within 3 weeks of training with no further changes thereafter in individuals with type 2 diabetes. These adaptations were accompanied by unaltered near-infrared spectroscopy-derived muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration, \([HHb+Mb]\)) kinetics and transiently reduced \(\Delta[HHb+Mb]-\Delta\dot{V}O_2\) ratio, suggesting an enhanced blood flow distribution within the active muscles subsequent to both training interventions.
Abstract

We assessed the time course of changes in oxygen uptake (V̇O₂) and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, [HHb+Mb]) kinetics during transitions to moderate-intensity cycling following 12-weeks of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n=10, 50 min of moderate-intensity cycling), HIIT (n=9, 10x1 min at ~90% maximal heart rate) or non-exercising control (n=9) groups. Exercising groups trained 3 times per week and measurements were taken every 3 weeks. [HHb+Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O₂ delivery to O₂ utilization was assessed by the Δ[HHb+Mb]/ΔV̇O₂ ratio. The pretraining time constant of the primary phase of V̇O₂ (τV̇O₂p) decreased (P<0.05) at wk 3 of training in both MICT (from 44±12 to 32±5 s) and HIIT (from 42±8 to 32±4 s) with no further changes thereafter; while no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb+Mb]) was faster than τV̇O₂p in all groups, resulting in Δ[HHb+Mb]/V̇O₂p showing a transient “overshoot” relative to the subsequent steady-state level. After 3 wks, the Δ[HHb+Mb]/V̇O₂p overshoot was eliminated only in the training groups, so that τ'[HHb+Mb] was not different to τV̇O₂p in MICT and HIIT. The enhanced V̇O₂ kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O₂ delivery to utilization.

Keywords: muscle oxygenation, cycling, near-infrared spectroscopy, oxygen extraction, exercise tolerance.
Introduction

Exercise prescription is a well-established strategy, central in the treatment and management of T2D. Chronic exercise training serves to curtail the progression of the disease itself and to reduce the increased propensity of cardiovascular morbidity and mortality in this clinical population (22, 77). Despite this, adherence to exercise is low in T2D. This may be influenced by the increased perception of effort (23) and decreased exercise capacity/tolerance consistently shown in this population. Specifically, peak oxygen uptake (VO_{2peak}) is reduced in individuals with T2D across all ages (4, 20, 36, 53, 54, 63) and in individuals with T2D under 60 years of age, the dynamic responses of VO_{2} during moderate-intensity exercise (VO_{2} kinetics) is blunted (i.e. slowed) as represented by a higher time constant of the primary phase of the VO_{2} response, τVO_{2p} (20). Such manifestations are of important clinical and functional relevance given that VO_{2peak} correlates strongly with all-cause mortality (77), and τVO_{2p}, is an independent marker for, and recognized determinant of, exercise tolerance (24, 62, 78). The prolonged τVO_{2p} in T2D mandates the development of a larger O_{2} deficit during submaximal exercise efforts, necessitating a greater reliance on anaerobic ATP resynthesis to generate sufficient ATP to sustain the activity (26) and contributes to premature muscle fatigue and exhaustion.

Although the mechanisms governing the impaired τVO_{2p} herein are not well understood, they are likely influenced, at least partly, by cardiovascular defects, for example impaired left ventricular filling (83, 84), and/or limitations in peripheral O_{2} delivery/supply to contracting muscles in the lower limbs (8, 30, 31, 34, 38, 59), although restrictions in the oxygen extraction ability have also been reported (29, 65). Our laboratory recently showed a larger mismatch in local (microvascular) O_{2} delivery to utilization in the quadriceps muscle in T2D compared with
healthy controls, which was accompanied with slowed τ\(\dot{\text{V}}O_2\) (66). This was reflected by a greater ratio of change in near-infrared spectroscopy (NIRS)-derived deoxygenated hemoglobin and myoglobin concentration (\([\text{HHb}+\text{Mb}]\) to change in \(\dot{\text{V}}O_2\) (\(\Delta[\text{HHb}+\text{Mb}]/\Delta\dot{\text{V}}O_2\)) (66). This is consistent with findings showing a transient lowering of capillary PO2 at the onset of exercise in rodent models with T2D, thereby limiting O2 transport from the capillary to the myocyte (10) as well as reduced microvascular blood flow responses during transitions to moderate-intensity cycling in adults with uncomplicated T2D (7).

Previous studies have shown that 12-weeks of traditional endurance training interventions, involving ~150 min of continuous exercise per week [intensities ranging from ~60 to 80% maximum heart rate (HR\text{max})], improve τ\(\dot{\text{V}}O_2\) during transitions to moderate-intensity cycling in T2D (11, 21, 37), that the magnitude of this change is not different for men and women, and that these effects are not related to changes in systemic cardiovascular dynamics (21). However, in light of the poor exercise engagement in this clinical cohort (76), with “lack of time” often cited as a key barrier (75), a great interest has emerged in low-volume high-intensity interval training (HIIT) interventions (involving ~75 min per week of intermittent vigorous exercise, typically including less than 15 min of high-intensity efforts per session (81)) due to their time efficient nature. While HIIT induces similar benefits in cardiorespiratory fitness as traditional longer duration aerobic continuous training interventions (17, 41, 64, 82), whether HIIT can elicit benefits in \(\dot{\text{V}}O_2\) kinetics in T2D is unknown. Moreover, the time-course of effects and mechanisms underlying the benefits on \(\dot{\text{V}}O_2\) kinetics following training in T2D is poorly understood. Accordingly, the primary aim of this study was to examine the time course and mechanisms of adaptation in the dynamic responses of \(\dot{\text{V}}O_2\) during moderate-intensity cycling.
subsequent to 12 weeks of HIIT and moderate-intensity [i.e., below ventilatory threshold (VT)] continuous training (MICT) interventions in individuals with uncomplicated T2D. We hypothesized that both interventions would speed the \(\dot{\text{VO}}_2 \) kinetics response and reduce the \(\Delta[\text{HHb}+\text{Mb}]/\Delta\dot{\text{VO}}_2 \) ratio (i.e. reflecting a better matching of \(\text{O}_2 \) delivery to \(\text{O}_2 \) utilization) early in training.

Methods

Participants

This study is part of a larger randomized controlled trial reported in a companion paper (18). Participants were recruited from the Diabetes Outpatient Clinics of St. Columcille’s and St. Vincent’s University Hospitals (Dublin) by advertisements placed on the notice boards. Participant’s eligibility was initially checked following chart review. Specifically, participants were included if they had a clinical history of diabetes < 11 yr, were untrained and had HbA\(_1c\) levels of <10%. Participants were excluded if they were treated by exogenous insulin, were smokers, had a disease contraindicating physical training, or demonstrated evidence of renal, liver or cardiovascular disease. All individuals completed a 12-lead electrocardiogram treadmill stress test (Bruce protocol) at St. Columcille’s Hospital prior to attending the laboratory tests.

Thirty four participants completed the baseline laboratory assessments (*see testing*) and were given opaque sealed envelopes randomly allocating them to one of the 3 intervention groups (MICT, initially \(n = 12 \); HIIT, initially \(n = 10 \); or Control, initially \(n = 12 \)). Eight participants dropped out of the study for personal reasons unrelated to the experiment (MICT, \(n = 2 \); HIIT, \(n = 3 \); Control, \(n = 3 \)). Participants in the Control group were offered re-randomisation to one of
the exercise training groups after the intervention period, of which 2 accepted (HIIT, n = 2) and subsequently completed the training intervention. The final study population consisted of 26 participants undergoing the intervention, of whom 2 underwent both Control and HIIT. Thus, 28 completed responses from the study intervention were included for statistical analysis (MICT, n = 10; HIIT, n = 9; Control, n = 9). All participants provided written informed consent prior to participation. The study was approved by the Faculty of Health Sciences’ Research Ethics Committee, Trinity College Dublin, and St Vincent’s Healthcare Ethics and Medical Research Committee, and conducted in accordance with the principles outlined by the Declaration of Helsinki.

Supervised exercise interventions

Overview. Participants in the HIIT and MICT groups carried out a 12-week supervised exercise intervention, training 3 times per week on non-consecutive days at a local health and fitness centre in Co. Dublin, whereas participants in the Control group received no intervention and continued with their normal daily routine. All exercise training sessions were supervised by a study investigator. Training intensity was adjusted at 3-week intervals (i.e. every 9 sessions) to reflect changes in fitness levels. Participants were equipped with a heart rate monitor (Cardiosport, USA) to adhere to the prescribed exercise intensity. Both exercise groups completed a 5 min warm up and 5 min cool down before and after each session on an aerobic machine of their choice (elliptical, treadmill, rowing or cycle ergometer). The main component of each training session was completed on a cycle ergometer as follows:

Low-volume high-intensity interval training: The HIIT group completed 10 x 60-s bouts of high-intensity cycling interspersed with 60-s of light cycling. The high-intensity bout was completed
at a power output equivalent to 70% of the difference between participant’s peak power output (
P_{\text{POpeak}}) and the power output at ventilatory threshold (VT) (70% Δ) achieved during the ramp exercise test (see testing). This output was designed to elicit a target heart rate of ~90% \(H_{\text{Rmax}} \)
during the high-intensity bouts, whereby participants were expected to exercise in the severe-intensity domain.

Continuous training: Each MICT session comprised of 50 minutes of cycling at a power output equivalent to ~80-90% VT as calculated from the ramp test (see testing). The energy expenditure from the supervised exercise sessions was estimated based on the American College of Sports Medicine's equation (19).

Testing

Initially, physical activity levels were assessed by the use of 5-day RT3 triaxial accelerometry (Stayhealthy Inc, CA) (Table 1). The threshold for sedentary or inactive behaviour (<1.5 metabolic equivalents or METs) was set as < 100 counts/min (5), counts/min between 101 and 1317 were considered light activity (1.5-3 METs); and counts/min >1317 corresponded to moderate-to-vigorous physical activity (>3 MET) (68). Then, prior to the commencement of, and every 3 weeks throughout the intervention, participants were required to attend the exercise testing facility in St. Columcille’s Hospital on two separate occasions to complete a ramp incremental test to exhaustion and 2-4 bouts of constant-load moderate-intensity cycling. For each participant all tests were performed at the same time of day. All exercise tests were carried out in an upright position on an electrically braked cycle ergometer (Excalibur Sport; Lode B.V., Groningen, Netherlands). Participants were asked to refrain from consuming alcohol, caffeine
and non-prescribed nutritional supplements as well as avoiding any strenuous exercise in the 24 hours prior to testing. At baseline (pretraining) and at the end of the intervention period (posttraining) fasting venous blood samples were collected to assess glycosylated haemoglobin (HbA1c). Participants were familiarised with the ramp incremental test and constant-load tests prior to commencing the intervention.

Ramp incremental cycling tests: The test started with an initial workload of 10 W for 2 min (i.e. ‘unloaded’ cycling). This was followed by 10-25 W/min increments in power output based on participants’ activity levels. Pedalling rate was held constant at an individually selected cadence between 60-75 revolutions per minute (rpm) and was maintained throughout all further testing. Failure/exhaustion in a test was determined as a drop in cadence exceeding 10 rpm for >5 s. Peak workload was the power output achieved at the point of failure. \(\dot{VO}_2 \)\(_{\text{peak}} \) was the highest \(\dot{VO}_2 \) value (15-s average) attained during the test. The first ventilatory threshold (VT) was determined by two investigators using the V-slope method as previously described (9).

Moderate-intensity cycling exercise transitions: All participants performed 2-4 bouts of constant-load moderate-intensity cycling at 80% of each participant’s VT obtained during the ramp incremental test at the pretraining time point, so that for each participant the same absolute power output was used at all 5 time points during the intervention. The duration of each step transition was 6 min and each transition was preceded by a 3 min ‘baseline’ cycling period at 10W. There was at least a 15 min rest period between consecutive cycling bouts. Due to time constraints, in 30% of the laboratory visits 2 moderate-intensity bouts were completed, while in the rest of the visits 3-4 transitions were completed. Heart rate (HR), gas exchange/ventilatory
variables and muscle oxygenation & deoxygenation were continuously measured during each cycling bout.

Measurements

During exercise, participants wore a facemask to continuously collect expired air using an online metabolic system (Innocor, Innovision A/S, Odense, Denmark) that measured airflow using a pneumotachometer. Carbon dioxide analysis was performed by using a photoacoustic gas analyzer and oxygen was analyzed using an oxygen sensor (Oxigraf Inc., USA) based on the principle of laser diode absorption spectroscopy. The system was calibrated prior to each test as per manufacturer’s recommendations. Both the oxygen sensor and photoacoustic gas analyser require multi-point calibration that is routinely performed by the manufacturer every 6-12 months. Analysis of expired air allowed determination of pulmonary O₂ uptake (\(\dot{V}O_2 \)), CO₂ output (\(\dot{V}CO_2 \)), minute ventilation (\(\dot{V}E \)) and the respiratory exchange ratio (RER) breath-by-breath. Heart rate (HR) was recorded every 5 s (Polar S610i, Polar Ltd, Finland), with peak HR (HR\(_{\text{peak}}\)) defined as the highest HR attained within the last 15 s of termination of the test. Peak O₂ pulse was calculated as \(\dot{V}O_2\text{peak}/HR_{\text{peak}} \).

A continuous wave NIRS system (Hamamatsu Niro 200Nx; Hamamatsu Photonics, Hamamatsu, Japan), was used to determine muscle oxygenation status non-invasively through the spatially resolved spectroscopy technique and modified Beer-Lambert principle, with three wavelengths of emitting light (\(\lambda = 735, 810, \) and 850 nm). The theoretical basis of NIRS and its use in exercise measurements have been described in detail elsewhere (14) but briefly, this technique estimates the optical density changes of oxygenated (O₂Hb+Mb) and deoxygenated haemoglobin.
and myoglobin (HHb+Mb) based on the oxygen dependency of absorption changes for near-infrared light in these proteins. As the vastus lateralis (VL) muscle is a dominant locomotor muscle during cycling, the present study examined the Δ[HHb+Mb] profiles of the right VL muscle. After shaving, cleaning and drying the skin, the probes were placed on the belly of the muscle, 10-16 cm above the lateral femoral condyle, parallel to the major axis of the thigh with a 3 cm spacing between the emitter and receiver. The probes were housed in a black rubber holder and secured on the skin surface with bi-adhesive tape and then covered with a dark elastic bandage, which minimised extraneous movement and the intrusion of stray light throughout the exercise protocol. Since the depth of the measured area was estimated to be approximately one-half the distance between the emitter and the receiver (~1.5 cm), the present study determined the thickness of the skin and adipose tissue at the site of the probe placement via 2D ultrasound operating in B-mode (Zonare Ultra Smart Cart, Software version 4.7, USA), to ensure that data largely represented absorption of near-infrared light in muscle tissue and not in subcutaneous fat. Individuals presenting with adiposity >1.5 cm over the site of interrogation on the VL were excluded from the study.

Data Analysis

\[\text{\textit{V}O_2 Kinetics:} \] The breath-by-breath \(\text{\textit{V}}O_2 \) data for each transition were linearly interpolated to provide second-by-second values and time aligned such that time 0 represented the onset of exercise. Data from each transition were ensemble-averaged to yield a single, average response for each individual and further time-averaged into 5 s bins (27). Data were then fitted to a monoexponential function (eq. 1) or biexponential function (eq. 2). By visual inspection, the majority of the 140 responses (90%) consisted of a single (primary) phase and were fitted to eq.
1. The remaining responses (10%) displayed a second phase ("slow component") and were fitted to eq. 2. This second phase was observed in 14 responses (from 9 participants, Control, \(n = 3 \); HIIT, \(n = 3 \); MICT, \(n = 3 \)), had a mean amplitude of 76 mL/min (SD = 21 mL/min), was only observed among control participants beyond week 3 of the intervention, and was likely due to the fact that in the present study the mean response times of \(\overline{\text{VO}_2} \) during the ramp cycle exercise were not accounted for when calculating the target power outputs (28). The equations are as follows:

\[\text{Equation 1} \]
\[\overline{\text{VO}_2}(t) = \overline{\text{VO}_2} \text{ baseline} + A_p[1-e^{-(t-TD_p)/\tau_p}]F1 \]

\[\text{Equation 2} \]
\[\overline{\text{VO}_2}(t) = \overline{\text{VO}_2} \text{ baseline} + A_p[1-e^{-(t-TD_p)/\tau_p}]F1 + A_s[1 - e^{-(t - TD_s)/\tau_s}]F2 \]

where \(\overline{\text{VO}_2}(t) \) represents the absolute \(\text{VO}_2 \) at a given time \(t \); \(\overline{\text{VO}_2} \) baseline is the mean \(\overline{\text{VO}_2} \) in the final 30 s of unloaded cycling; \(A_p \) and \(A_s \), are the amplitudes of the increase in \(\overline{\text{VO}_2} \) of the primary and slow component phases respectively; \(TD_p \) and \(TD_s \) are the phase delays, and \(\tau_p \) and \(\tau_s \) are the time constants, defined as the duration of time for which \(\overline{\text{VO}_2} \) increases to a value equivalent to 63% of the amplitude. The conditional expressions \(F1 \) and \(F2 \) limit the fitting of the phase to the period at and beyond its time delay. The first 20 s of data after the onset of exercise (i.e., the phase I \(\overline{\text{VO}_2} \) response) were deleted, and while still allowing TD to vary freely (to optimize accuracy of parameter estimates), \(\overline{\text{VO}_2} \) data were modelled from 20 s to 360 s of the step transition to ensure that each subject had attained a \(\overline{\text{VO}_2} \) steady state (51). So, in this approach the TD is not used as a proxy for, nor is it synonymous with, phase I duration (51). Fitting used a weighted least-squares non-linear regression procedure (TableCurve 2D, Systat, USA) performed in 2 steps, with outliers (>95% prediction interval) removed after the initial fit
Parameter estimates of the best-fit function were used and only estimates representing the primary phase are presented. Whilst the presence of a slow component was detected in 14 responses, the presence of this phase does not appear to significantly affect the parameter estimates of the earlier phases (79). The end-exercise $\dot{V}O_2$ response, referred to as End-exercise A, was calculated as the averaged $\dot{V}O_2$ over the last 30 s of the primary $\dot{V}O_2$ response. The functional “gain” of the primary $\dot{V}O_2$ response was calculated as the difference between End-exercise A and $\dot{V}O_2$ baseline normalized to the difference in power outputs between the moderate-intensity exercise and unloaded cycling.

Deoxygenated haemoglobin/myoglobin [$HHb+Mb$] kinetics. To provide information on muscle deoxygenation throughout the protocol, we modelled the [$HHb+Mb$] response to exercise. As per the $\dot{V}O_2$ data, the NIRS-derived $\Delta[HHb+Mb]$ data for each transition were linearly interpolated to provide second-by-second values and time aligned. Data from each transition were ensemble-averaged to yield a single average response for each individual, and further time-averaged into 5 s bins. A time delay (TD) at the onset of exercise occurs in the [$HHb+Mb$] profiles before they increase. [$HHb+Mb$] data were fitted from the end of the TD to 180 s using equation 1 as per $\dot{V}O_2$. The shorter fitting window of 180 s was selected to counteract the previously reported variations in the NIRS signal between 180-360 s from exercise onset (also observed herein), from impacting the fitting of the on-transient response whilst permitting the reaching of a steady-state (15, 16, 50). The time course for the increase in $\Delta[HHb+Mb]$ can be described by the $\tau\Delta[HHb+Mb]$, however, the time course for the overall change of the $\Delta[HHb+Mb]$ responses, referred to as the effective response time ($\tau'\Delta[HHb+Mb]$) was determined from the sum of the time delay and τ from the onset of exercise. Changes in total
blood volume were assessed by summing the [oxyHb+Mb] and [HHb+Mb] signals to provide an estimate of total[Hb+Mb] in the area under investigation. Specifically, Δ total[Hb+Mb] was calculated as the difference between baseline (30 s prior to each transition) and end-exercise (final 30 s) values.

$\Delta[Hb+Mb]/\Delta VO_2$ ratio. To calculate the $\Delta[Hb+Mb]/\Delta VO_2$ ratio (49, 50) individual second-by-second $\Delta[Hb+Mb]$ and \hat{VO}_2 data were firstly normalised (from 0%, corresponding to the pre-transition 10W baseline value to 100% reflecting the steady-state within the initial 180 s for $\Delta[Hb+Mb]$ or the steady-state of the primary \hat{VO}_2 response for \hat{VO}_2 data). Then, $\Delta[Hh+Mb]$ and \hat{VO}_2 were time aligned by left-shifting the normalised \hat{VO}_2 data by 20 s, accounting for the approximate duration of the cardiodynamic phase, to ensure that the onset of exercise coincided with the beginning of the primary phase of \hat{VO}_2. The normalised and time aligned data was then further averaged into 5 s bins for statistical comparisons. The overall $\Delta[Hb+Mb]/\Delta VO_2$ ratio for the adjustment during the exercise on-transient was derived for each individual as the mean value from 20-150 s into the transition. The commencement point of 20 s was selected to begin beyond the physiological TD $\Delta[Hb+Mb]$, with the 150 s end point indicative of the time point at which a steady-state value of 1.0 had been achieved by the $\Delta[Hb+Mb]/\Delta VO_2$ ratio (50).

Values > 1.0 represent a time period whereby during the exercise transition there was a greater reliance on fractional O$_2$ extraction compared with the exercise steady-state (values = 1.0), thus reflecting a poorer local O$_2$ delivery relative to muscle O$_2$ utilisation in the area of NIRS interrogation.
Statistical Analysis

Physical characteristics and activity levels at baseline among groups were compared using a one-way ANOVA. Peak physiological responses as well as changes in total [HHb+Mb], the normalized \(\Delta[\text{HHb+Mb}] / \Delta \dot{V}O_2 \) ratio and kinetics parameter estimates for \(\dot{V}O_2 \) and [HHb+Mb] during moderate-intensity exercise throughout the intervention were compared using a two-factor [time (pretraining, week 3, week 6, week 9, posttraining) vs. group (HIIT, MICT, CON)] mixed ANOVA. Body mass and HbA\(_1c\) results were also compared using a two-factor [time (pretraining, posttraining) vs. group (HIIT, MICT, CON)] mixed ANOVA. Differences were detected using a Student-Newman-Keuls post hoc test. To assess whether the \(\Delta[\text{HHb+Mb}] / \Delta \dot{V}O_2 \) ratio was different from 1 (i.e. to identify if there was a mismatch between local O\(_2\) delivery relative to muscle O\(_2\) utilisation) a Student’s t-test was used. Finally, correlations between training-induced changes in \(\tau \dot{V}O_2p \) and changes in \(\Delta[\text{HHb+Mb}] / \Delta \dot{V}O_2 \) ratios were established using the Pearson product-moment correlation coefficient (Pearson r). Significance was set at \(P < 0.05 \). All values are expressed as mean ± standard deviation (SD).

Results

Physical characteristics, pretraining peak exercise values and activity levels.

Participants’ physical characteristics, peak exercise values and activity levels at baseline are presented in Table 1. There was a significant time x group interaction (\(P = 0.022 \)) for body mass so that posttraining body mass was reduced (\(P = 0.001 \)) in the MICT group (pre = 90.3 ± 18.6 kg, post = 87.2 ± 17.2 kg) but not in the HIIT (pre = 87.5 ± 12.4 kg, post = 86.5 ± 12.2 kg) or control (pre = 86.0 ± 14.0 kg, post = 86.4 ± 15.6 kg) groups. HbA\(_1c\) (%) (time x group interaction, \(P < 0.012 \)) was reduced in the MICT (pre = 6.9 ± 0.5%, post = 6.6 ± 0.4%) and HIIT
groups (pre = 7.3 ± 0.5%, post = 7.0 ± 0.6%) but not in the control (pre = 6.8 ± 1.0%, post = 7.0 ± 1.0%) group.

Exercise adherence, caloric expenditure and work done

The mean exercise adherence was 94 ± 6% (range 31-36 sessions) and 98 ± 4% (range 32-36 sessions) in the HIIT and MICT groups respectively. The average training intensity (power output) increased significantly (P < 0.05) every 3 weeks (i.e. after each laboratory testing session) in the MICT group (weeks 1–3, 79 ± 29 W; weeks 4–6, 106 ± 39 W; weeks 7–9, 117 ± 42 W; weeks 10-12, 128 ± 42 W) while it also significantly increased every 3 weeks until week 9, but not between week 9 and 12 (P = 0.24) in the HIIT group (weeks 1–3, 166 ± 45 W; weeks 4–6, 181 ± 46 W; weeks 7–9, 193 ± 46 W; weeks 10-12, 197 ± 45 W). The average energy expenditure and total work done per training session (including the warm up) was ∼228 kcal and ∼165 kJ for the HIIT group, and ∼478 kcal and ∼326 kJ for the MICT group. No adverse training effects to training were observed throughout the intervention period in either exercising group.

Peak physiological responses from ramp incremental cycling

For absolute \dot{V}O$_{2}$peak (L/min), as well as \dot{V}O$_{2}$peak normalised to body (mass mL.kg$^{-1}$.min$^{-1}$), there was a significant time x group interaction (P < 0.001), so that \dot{V}O$_{2}$peak did not increase in the control group (\dot{V}O$_{2}$peak at pretraining = 1.86 ± 0.52 L/min; 21.5 ± 3.6 mL.kg$^{-1}$.min$^{-1}$), but it significantly increased after 3 weeks of MICT (from 2.14 ± 0.69 to 2.48 ± 0.65 L/min; and from 22.8 ± 4.4 to 27.0 ± 5.0 mL.kg$^{-1}$.min$^{-1}$) and HIIT (from 2.31 ± 0.51 to 2.50 ± 0.56 L/min; and from 26.4 ± 4.0 to 28.5 ± 4.2 mL.kg$^{-1}$.min$^{-1}$). There were no further significant changes in \dot{V}O$_{2}$peak thereafter (\dot{V}O$_{2}$peak at posttraining for MICT = 2.62 ± 0.72 L/min; 28.6 ± 4.7 mL.kg$^{-1}$.
HR\text{peak} did not change throughout the intervention in any of the groups (pretraining HR\text{peak} were, MICT = 159 ± 15 beats/min; HIIT = 162 ± 13 beats/min and Control = 164 ± 13 beats/min). Consequently, peak O\textsubscript{2} pulse significantly increased after 3 weeks of MICT and HIIT (13.5 ± 4.2 to 15.8 ± 3.7 mL/beat and 14.4 ± 3.3 to 15.2 ± 3.6 mL/beat respectively) with no further changes thereafter (peak O\textsubscript{2} pulse at posttraining were 16.5 ± 4.3 and 16.3 ± 4.0 mL/beat, respectively), but it did not change (time x group interaction, \(P < 0.01 \)) in the control group (peak O\textsubscript{2} pulse at pretraining = 11.3 ± 3.2 mL/beat). \(\dot{V}O\textsubscript{2} \) responses (L/min) at VT also significantly increased after 3 weeks of MICT (from 1.56 ± 0.51 to 1.67 ± 0.43 L/min) and HIIT (from 1.73 ± 0.40 to 1.85 ± 0.38 L/min) and they further significantly increased from week 3 to 6 (1.92 ± 0.55 L/min) in the MICT group and week 3 to 9 (2.02 ± 0.41 L/min) in the HIIT group with no further changes thereafter. \(\dot{V}O\textsubscript{2} \) at VT did not change in the control group (\(\dot{V}O\textsubscript{2} \) at VT at pretraining = 1.31 ± 0.30 L/min).

\(\dot{V}O\textsubscript{2} \) kinetics

Individual \(\tau \dot{V}O\textsubscript{2p} \) responses throughout the intervention period are shown in Fig 1, while mean \(\tau \dot{V}O\textsubscript{2p} \) values are summarised in Table 2 and Fig 2A. Pretraining \(\tau \dot{V}O\textsubscript{2p} \) values were not different among the 3 groups. After 3 weeks of training, \(\tau \dot{V}O\textsubscript{2p} \) was significantly reduced in both the HIIT and MICT groups with no further significant changes thereafter. In contrast, \(\tau \dot{V}O\textsubscript{2p} \) was not changed throughout the 12 week period in the control group (time x group interaction, \(P < 0.01 \)).

The \(\dot{V}O\textsubscript{2} \) at baseline, the amplitude of increase in \(\dot{V}O\textsubscript{2} \), end-exercise \(\dot{V}O\textsubscript{2} \) amplitude or the functional \(\dot{V}O\textsubscript{2} \) gain were not different among groups and did not change throughout the intervention (Table 2). There was a main effect of time (\(P < 0.05 \)) for \(\dot{V}O\textsubscript{2} \) TD so that it was larger at all time points than pretraining.
Muscle deoxygenation kinetics, total[Hb+Mb] and normalized Δ[Hb+Mb]/ΔV̇O₂ ratio index

The effective response times of muscle deoxygenation (τ'[HHb +Mb]) as well as normalized Δ[Hb+Mb]/ΔV̇O₂ ratios are displayed in Table 3 and Fig 2 (panels B & C). The normalised adaptation of Δ[Hb+Mb] and V̇O₂ and the corresponding Δ[Hb+Mb]/ΔV̇O₂ ratios for representative individuals from each group, at each time point throughout the intervention are shown in Fig 3. The baseline Δ[Hb+Mb], time delay-Δ[Hb+Mb], τ[Hb +Mb], τ'[Hb+Mb], the change in total[Hb+Mb] or the ratio of the modelled amplitudes of Δ[Hb + Mb]/ΔV̇O₂ were not different among groups and did not change throughout the intervention (Table 3). There was a main effect of group (P < 0.05) for the amplitude of the increase as well as end-exercise amplitude of Δ[Hb+Mb], so that they were larger in the HIIT group compared with the other 2 groups. At pretraining, τ'[HHb +Mb] was shorter (P < 0.05) than τV̇O₂p in all groups, which induced a transient overshoot in the estimated normalized Δ[Hb + Mb]/ΔV̇O₂ ratio (relative to the steady-state ratio of 1.0) (Table 3, Fig 2C). After 3 weeks of HIIT and MICT, τ'[Hb + Mb] and τV̇O₂p were not different and they remained as so throughout the intervention. Similarly, by week 3 of training, the Δ[Hb + Mb]/ΔV̇O₂ overshoot was eliminated (i.e. it was not different from 1.0) in both training groups and remained that way for the rest of the intervention. In contrast, in the control group τV̇O₂p remained longer (P < 0.05) than τ'[HHb +Mb] throughout the intervention period and was accompanied with a Δ[Hb + Mb]/ΔV̇O₂ overshoot. In addition, in all participants, the percentage change in τV̇O₂p was significantly correlated with the percentage change in the normalized Δ[Hb + Mb]/ΔV̇O₂ ratio at week 3 (r = 0.46, P = 0.02), week 9 (r = 0.53, P < 0.01), and posttraining (r = 0.5, P < 0.01), but not at week 6 (r = 0.23, P = 0.25). However, within each group or among the 2 exercising groups
together, the percentage change in $\tau \dot{V}O_2p$ was not significantly correlated with the percentage change in the normalized $\Delta[HHb + Mb]/\Delta \dot{V}O_2$ ratio at any time point.

Discussion

To our knowledge, this is the first study to assess the time-course of effects on $\dot{V}O_2$ kinetics following exercise training in T2D, in addition to comparing these effects between MICT vs low-volume HIIT. The principal findings of the present study were that both low-volume HIIT and MICT significantly reduced $\tau \dot{V}O_2p$ during a transition to moderate-intensity cycling by week 3 of training and that these effects were accompanied with a simultaneous reduction in the normalized $\Delta[HHb + Mb]/\Delta \dot{V}O_2$ ratio, suggestive of improvements of microvascular blood flow delivery. These benefits in $\tau \dot{V}O_2p$ and microvascular blood flow delivery followed a similar time course, being of a magnitude that was not different between exercising groups and were maintained for the remainder of the intervention without further improvements.

The increased $\dot{V}O_2$ responses observed in the HIIT and MICT groups demonstrate the effectiveness of both training protocols compared with the non-exercising control group. While performing an additional incremental test and/or verification test at each time point would have been beneficial to add confidence in this outcome, the training-induced increases in $\dot{V}O_2$ were apparent without any changes in HR_{peak}. Thus, the improvement in $\dot{V}O_2$ appears to be more likely due to physiological factors rather than motivational factors which verification testing attempts to control for. In this regard, the rapid improvement in cardiorespiratory fitness is of great clinical relevance, given that improvements in cardiorespiratory fitness are associated with reduced mortality risk (67). That in the present study, both HIIT and MICT also significantly
reduced HbA1c, an indicator of long-term glycaemic control, is also of major clinical significance, as a 1% decrease in HbA1c can result in up to 15-20% reduction in major cardiovascular events (71) and up to 37% reduction in microvascular complications (74). On the other hand, the fact that only the MICT group significantly reduced whole body mass herein was likely related to the larger energy expenditure during the actual MICT exercise sessions. In contrast, Winding et al. (85) observed significant reductions in whole body mass following low-volume HIIT but not continuous aerobic training (50% PO_{peak}) in uncomplicated T2D, despite a 36% higher energy expenditure during the MICT intervention, and Madsen et al (41) also reported significant whole body mass reductions subsequent to low-volume HIIT in T2D. These authors highlighted that the significant weight loss associated with HIIT could be related to an increased energy expenditure in the recovery phase of the HIIT sessions and higher production of plasma catecholamine levels during HIIT, inducing lipolysis post exercise. However, neither these studies nor the present study monitored energy intake and physical activity counts throughout the interventions, so, further research is needed to determine the physical and metabolic impact of compensatory behavioural changes consequent to different exercise training interventions in T2D.

In the present study, both interventions significantly reduced τ\(\dot{V}O_2p\) after the 12 week intervention period by a magnitude that was not different between them (42% MICT; 36% HIIT). These findings cohere with previous studies showing significant improvements in τ\(\dot{V}O_2p\) during moderate-intensity cycling in men and women with T2D, following aerobic continuous training (~60 to 80% HR_{max}) interventions of similar duration (11, 21, 37). Importantly, the present study showed that the greatest reduction in τ\(\dot{V}O_2p\) occurred after just 3 weeks of training,
(26% MICT; 24% HIIT), with no further significant changes thereafter despite progressive increases in training intensity. While these time course of adaptations in τVO_2 herein have not been reported in T2D, they are overall in agreement with observations in older untrained individuals following 12 weeks of aerobic continuous training (~70% VO$_{2\text{max}}$). Specifically, older males and females presenting with an initially slowed τVO_2 (43 and 55 s, respectively) experienced significant reductions in τVO_2 (19% and 33% respectively) within 3 weeks (after completing 6 exercise sessions) of their intervention with no further changes thereafter (48, 49).

On the other hand, interestingly, McKay et al. (44) demonstrated among recreationally active young males, that only 2 sessions of aerobic continuous training (~65% VO$_{2\text{max}}$) or low-volume HIIT elicited a significant improvement in τVO_2 during moderate-intensity cycling (17 and 19%) and that τVO_2 responses were further reduced (41% and 39%) posttraining (after 8 exercise sessions). Further studies are needed to establish the shorter (<3 weeks) time-course effects of MICT vs HIIT in T2D.

Given that the training volume herein was ~50% lower in the HIIT compared with the MICT group, it would appear that the specific nature of the training was more important than the total volume in speeding the VO$_2$ kinetics response. It is possible that the high rates or ‘steps’ of muscle fiber recruitment and repetitive shear stress during the HIIT exercise sessions influenced the current outcome (39). However, it remains unclear why a levelling off in the VO$_2$ kinetics adaptations beyond 3 weeks of training was observed in both exercising groups herein despite progressive adjustments in exercise intensity; a phenomenon also previously observed among older untrained participants following aerobic continuous training (48, 49). It is noteworthy that herein, VO$_{2\text{peak}}$ responses also levelled off beyond the initial weeks of training, which is
consistent with findings by Astorino et al. (3) among healthy individuals during short-term low-volume HIIT. In a follow-up study, Astorino and colleagues (2) showed that in order to further increase $\dot{V}O_2_{\text{max}}$ beyond the initial 3-4 weeks of low-volume HIIT training, a modification in the structure (i.e. employing sprint interval training sessions), rather than in the volume (i.e. increasing the duration of each interval within the sessions) of training was needed (2). It is possible that this would plausibly apply to $\dot{V}O_2$ kinetics adaptations at least following HIIT, given both parameters are influenced by the interaction of mechanisms of muscle oxygen delivery and utilization.

The underlying physiological mechanisms responsible for the improved $\dot{V}O_2$ kinetics with training must influence the rates of change of O_2 delivery to the working muscle, be that perfusively or diffusively, and/or utilisation therein (61). In the present study we measured the dynamic responses of the NIRS-derived $[\text{HHb+Mb}]$ alongside $\dot{V}O_2$ to estimate the training-induced effects on microvascular oxygen delivery/utilization within the active musculature. When applying this measure simultaneously with $\dot{V}O_2$ kinetics measurements, our laboratory recently showed that the rate of adjustment in the NIRS-derived $[\text{HHb+Mb}]$ was faster than the adjustment in $\tau\dot{V}O_2_p$ in uncomplicated T2D, suggesting an over reliance in fractional oxygen extraction and thus, a reduced blood flow response (66). Findings in keeping with T2D-induced impairments in the dynamic response of vasodilation and matching of capillary blood flow to metabolism in contracting myocytes (30, 38, 57, 58, 60). Herein, in agreement with studies on untrained older (48, 49) as well as young (44, 80) participants, despite the significant speeding of $\tau\dot{V}O_2_p$, the overall dynamic response of muscle deoxygenation ($\tau'[\text{HHb+Mb}]$) as well as the amplitude of the $[\text{HHb+Mb}]$ response and the Δ total[HH+Mb] were not affected by training in
either group at any time point, implying that training-induced decreases in $\tau \bar{V}O_2p$ were likely explained by greater muscle blood flow and O_2 delivery relative to muscle O_2 demand rather than greater overall blood volume and O_2 content. To better elucidate this, we assessed the $\Delta[HHb+Mb]/\Delta\bar{V}O_2$ profile, an index indicative of the degree of O_2 extraction required for a given increment in $\bar{V}O_2$ (13, 49, 50). We observed, as expected (66), that all 3 groups displayed a transient overshoot (relative to the steady-state ratio of 1.0) at the pretraining time point. However, by week 3, this transient overshoot was abolished in the MICT and HIIT groups and remained as so throughout the intervention; while the overshoot persisted at all time points in the non-exercising controls. Furthermore, after 3 weeks of exercise training, even if the $\tau'[HHb+Mb]$ values were unchanged from pretraining values, they were not different to $\tau \bar{V}O_2p$ and remained that way until the completion of the intervention. These findings reinforce the notion that both exercise interventions improved $\tau \bar{V}O_2p$, at least in part, by enhancing the dynamic matching of local blood flow and O_2 supply relative to demand within the active muscle. It must be acknowledged, however, that the demonstration of this greater muscle O_2 delivery relative to $\bar{V}O_2$ herein, does not exclude the possibility that training also enhanced mitochondrial $\bar{V}O_2$ dynamics inherently, and subsequently increased oxidative capacity (35).

Whether the training-induced rapid blood flow adaptations in the microvasculature of active muscles observed herein are also apparent at a systemic level in T2D remains to be established. For instance, consequent to 12 weeks of aerobic continuous training (~70-80% HR$_{max}$), MacAnaney et al. (37) demonstrated accelerated $\tau \bar{V}O_2p$, responses which were accompanied by a more rapid rate of increase in cardiac output during submaximal cycling using, as was the case in the present study, the same absolute intensities before and after training (80% VT of pretraining
However, a limitation therein was the fact that cardiac output responses were recorded only at 2 time points (at 30 s and 240 s) during each bout. In contrast, a more recent study has shown unaltered cardiac output dynamic responses (again, based on recordings taken at the same 2 time points) despite observing significant improvements in \(\dot{V}O_2 \) kinetics during submaximal efforts, but performed at the same relative intensity before and after training (i.e. 80% VT of time specific \(\dot{V}O_2 \)peak) (21). On the other hand, whether both training modalities improve the dynamic response of vasodilation (i.e. vascular conductance) of conduit arteries feeding the active muscles has not been studied in T2D, but unpublished observations from our laboratory suggest that leg vascular conductance kinetics responses during high-intensity calf plantar-flexion exercise are enhanced after 12 weeks of MICT in men and women with T2D. This is consistent with Shoemaker et al (73) who demonstrated among non-diabetic healthy participants a rapid enhanced femoral artery vascular conductance kinetics following 10 MICT exercise sessions.

It is likely that vascular functional and structural improvements contributed to changes in the training-induced microvascular oxygen delivery/utilization profile herein. For instance, both low-volume HIIT and aerobic continuous training improve endothelial function assessed by brachial artery flow mediated dilation (40, 46, 70). In addition, short-term HIIT induces increases in brachial artery outwards remodelling (40) and diameter (12), while short-term aerobic continuous training (50% PO peak) as well as longer term HIIT-style soccer training increase the capillary-to-fibre ratio within the VL muscle (1, 47). Although further studies are needed to better establish how low-volume HIIT and MICT impact these vascular adaptations, they seem to be attributed to reduction in localised oxidative stress within the vasculature and/or...
enhanced capillary-to-myocyte interface for tissue perfusion and substrate delivery possibly by increasing the proportion of red blood cell-flowing capillaries in the exercising muscle which is reduced in T2D, at least in animal models (56). Other important mechanisms potentially at play, relate to training-induced adaptations in skeletal muscle fibre oxidative capacity. Specifically, both, short to medium-term aerobic continuous training (~55-75% \(\dot{V}O_{2\text{max}} \)) as well as low-volume HIIT enhance the oxidative capacity of skeletal muscles (35, 45, 72) and increase the total mitochondrial content (33, 52) in individuals living with T2D.

Limitations

A number of limitations of the present study must be acknowledged. First, while it would have been relevant to assess 3 additional non-diabetic control groups (HIIT, MICT and Con) to compare how changes in \(\dot{V}O_2 \) kinetics among healthy individuals compare with those in people with T2D following the same exercise training interventions, this was not feasible given the very large time commitment associated with the current intervention. Future studies should attempt to compare these responses between individuals with T2D and healthy controls. Second, the NIRS-derived findings herein relate to a single muscle, the VL, and therefore, interpretation of this data is limited to the site of interrogation. In addition potential structural (vascularity and fibre type) (25), and functional (fibre recruitment, vascular control and blood flow) (32, 43) differences therein are acknowledged, as well as temporal and spatial heterogeneity in NIRS-derived responses extant both among and within muscles (55, 69). Third, the fact that 2 participant were re-randomized into one of the training groups might be considered a limitation of the study. We believe, however, that this does not influence the findings of the current study given that when data from these 2 control participants (who accepted re-randomization and completed one of the
interventions) were eliminated from the control group, the main outcomes of the study were unaffected. Finally, even if some of the participants completed only 2 exercise transitions, the CI95 for τVO₂p were not affected when comparing values from participants who completed 2 vs 3-4 constant-load transitions (4.0 ± 1.01 vs 4.0 ± 1.70 s, respectively), therefore, the potential impact of performing a lower number of transitions on the signal-to-noise ratio of the VO₂ response was not a confounding factor.

Conclusions

In the present study the time course and magnitude of changes in τVO₂p were similar following both low-volume HIIT and MICT interventions. The improvements in τVO₂p were accompanied by simultaneous reductions in the initial transient overshoot in the Δ[HHb+Mb]/ΔVO₂ profile, suggesting that both exercise interventions improved τVO₂p, at least in part, by enhancing blood flow distribution at the level of the microvasculature within the active muscle. Thus, it appears that training adaptations induced by HIIT and MICT in individuals with uncomplicated T2D, are equally capable of rapidly attenuating some local limiting factors governing the initially impaired VO₂ kinetics response during submaximal exercise efforts. The specific focus on the transition to moderate-intensity exercise is of great functional relevance, given its transferability to the metabolic transitions performed on a day-to-day basis, which are perceived as being more difficult in individuals with T2D than healthy counterparts (23). As such, a faster provision of aerobic metabolism would serve to reduce premature muscle fatigue during light- to moderate-intensity transitions, as carried out during routine everyday tasks (11, 37). Importantly, given that the training volume and time commitment herein was ~50% lower in the HIIT group and that HIIT programmes seem to be as enjoyable as traditional endurance interventions (6, 42),

26
clinical care teams should consider low-volume HIIT as a suitable and effective exercise modality to enhance oxidative metabolism in individuals living with T2D.

Grants

This publication has emanated from research conducted with the financial support of the Health Research Board (Grant No 08/RFP/BMT1342).

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Author contributions

REFERENCES

59. Poitras VJ, Bentley RF, Hopkins-Rosseel DH, LaHaye SA, and Tschakovsky ME. Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on

74. **Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, and Holman RR.** Association of glycaemia with macrovascular and microvascular

Figure captions

Figure 1. Individual time course of changes in the time constant of the primary phase of the oxygen uptake response (τV̇ O₂p) in the moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) and non-exercising control groups. Thin lines are individual participants and thick lines represent the mean change in each group.

Figure 2. Mean time course of changes in the time constant of the primary phase of the oxygen uptake response (τV̇ O₂p; A) in the effective response time of the deoxygenated hemoglobin and myoglobin concentration (τΔ[HHb+Mb]; B) and Δ[HHb+Mb]-to-ΔV̇ O₂ ratio index derived from the mean value from 20 to 150 s into the transition (C) in the moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) and non-exercising control groups. *HIIT and MICT significantly different from pretraining (P < 0.05); † HIIT and MICT significantly different from control (P < 0.05).

Figure 3. Representative time course of changes for the adjustment in normalised deoxygenated hemoglobin and myoglobin concentration (Δ[Hb+Mb]; open circles) and oxygen uptake (V̇ O₂; black circles) from baseline to moderate-intensity cycling transitions (i.e. initial 180 s) for individuals in the moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) and non-exercising control groups. The vertical line represents the abrupt transition to the higher work rate. Corresponding profiles for the adjustment of the Δ[Hb+Mb]/ΔV̇ O₂ ratio index (initial 150 s) are also shown (grey circles). Note that the transient overshoot in the Δ[Hb + Mb]/ΔV̇ O₂ ratio (relative to the steady-state ratio of 1.0) apparent at pretraining among the 3 representative participants, is attenuated in the participants from the HIIT and MICT groups.
beyond week 3 of training, while the overshoot remains apparent in the participant from the control group.
Fig 1

MICT

![Graph](image)

HIIT

![Graph](image)

Control

![Graph](image)
<table>
<thead>
<tr>
<th></th>
<th>MICT</th>
<th>HIIT</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Sex (male, female), n</td>
<td>7, 3</td>
<td>6, 3</td>
<td>4, 5</td>
</tr>
<tr>
<td>Age, yr</td>
<td>53 ± 10</td>
<td>52 ± 10</td>
<td>54 ± 9</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>30.0 ± 5.7</td>
<td>28.7 ± 3.0</td>
<td>30.5 ± 3.6</td>
</tr>
<tr>
<td>Time since diabetes diagnosis, yr</td>
<td>6.4 ± 3.8</td>
<td>6.6 ± 3.5</td>
<td>6.6 ± 3.3</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>6.9 ± 0.5</td>
<td>7.3 ± 0.5</td>
<td>6.8 ± 1.0</td>
</tr>
<tr>
<td>Fat layer of VL, mm</td>
<td>6.8 ± 2.8</td>
<td>6.4 ± 2.6</td>
<td>8.6 ± 3.2</td>
</tr>
<tr>
<td>Diabetes medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diet only, n</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Metformin, n</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Sulfonylurea, n</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>DPP-4 inhibitor, n</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GLP-1 analogues, n</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anti-hypertensive medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin converting enzyme inhibitor, n</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin II receptor blocker, n</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Statins, n</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Aspirin, n</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POpeak, W</td>
<td>168 ± 50</td>
<td>187 ± 51</td>
<td>148 ± 49</td>
</tr>
<tr>
<td>PO @ 80% VT, W</td>
<td>78 ± 25</td>
<td>92 ± 25</td>
<td>66 ± 20</td>
</tr>
<tr>
<td>Habitual physical activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive, h/day</td>
<td>17.4 ± 1.6</td>
<td>17.5 ± 2.2</td>
<td>17.9 ± 1.9</td>
</tr>
<tr>
<td>Light, h/day</td>
<td>5.8 ± 1.7</td>
<td>5.8 ± 2.6</td>
<td>5.4 ± 1.2</td>
</tr>
<tr>
<td>MVPA, h/day</td>
<td>0.8 ± 0.7</td>
<td>0.8 ± 0.3</td>
<td>0.7 ± 0.9</td>
</tr>
</tbody>
</table>

Data are mean ± SD. BMI, body mass index; HbA1c, glycosylated haemoglobin; VL, vastus lateralis; DPP-4, Dipeptidyl-peptidase 4; GLP-1, Glucagon-like peptide 1. PO, power output; MVPA, moderate-to-vigorous physical activity.
<table>
<thead>
<tr>
<th></th>
<th>Pretraining</th>
<th>Week 3</th>
<th>Week 6</th>
<th>Week 9</th>
<th>Posttraining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline VO₂, L/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>0.92 ± 0.21</td>
<td>0.93 ± 0.18</td>
<td>0.92 ± 0.24</td>
<td>0.95 ± 0.22</td>
<td>0.90 ± 0.16</td>
</tr>
<tr>
<td>HIIT</td>
<td>0.80 ± 0.21</td>
<td>0.83 ± 0.15</td>
<td>0.82 ± 0.10</td>
<td>0.83 ± 0.14</td>
<td>0.81 ± 0.12</td>
</tr>
<tr>
<td>Control</td>
<td>0.78 ± 0.17</td>
<td>0.74 ± 0.10</td>
<td>0.76 ± 0.14</td>
<td>0.78 ± 0.14</td>
<td>0.76 ± 0.13</td>
</tr>
<tr>
<td>VO₂ TD, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>14 ± 6</td>
<td>18 ± 6</td>
<td>15 ± 4</td>
<td>18 ± 3</td>
<td>16 ± 4</td>
</tr>
<tr>
<td>HIIT</td>
<td>15 ± 6</td>
<td>15 ± 4</td>
<td>15 ± 3</td>
<td>17 ± 5</td>
<td>16 ± 3</td>
</tr>
<tr>
<td>Control</td>
<td>17 ± 7</td>
<td>16 ± 5</td>
<td>21 ± 4</td>
<td>16 ± 5</td>
<td>18 ± 3</td>
</tr>
<tr>
<td>VO₂p A, L/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>0.68 ± 0.30</td>
<td>0.64 ± 0.29</td>
<td>0.65 ± 0.21</td>
<td>0.65 ± 0.25</td>
<td>0.67 ± 0.27</td>
</tr>
<tr>
<td>HIIT</td>
<td>0.85 ± 0.35</td>
<td>0.82 ± 0.32</td>
<td>0.83 ± 0.27</td>
<td>0.81 ± 0.29</td>
<td>0.82 ± 0.26</td>
</tr>
<tr>
<td>Control</td>
<td>0.51 ± 0.20</td>
<td>0.55 ± 0.22</td>
<td>0.52 ± 0.23</td>
<td>0.51 ± 0.22</td>
<td>0.53 ± 0.21</td>
</tr>
<tr>
<td>VO₂p end-exercise A, L/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>1.60 ± 0.41</td>
<td>1.58 ± 0.33</td>
<td>1.58 ± 0.37</td>
<td>1.60 ± 0.39</td>
<td>1.57 ± 0.37</td>
</tr>
<tr>
<td>HIIT</td>
<td>1.65 ± 0.36</td>
<td>1.65 ± 0.30</td>
<td>1.64 ± 0.31</td>
<td>1.64 ± 0.30</td>
<td>1.64 ± 0.31</td>
</tr>
<tr>
<td>Control</td>
<td>1.29 ± 0.31</td>
<td>1.28 ± 0.28</td>
<td>1.29 ± 0.32</td>
<td>1.29 ± 0.34</td>
<td>1.28 ± 0.31</td>
</tr>
<tr>
<td>VO₂p gain, mL.min⁻¹.W⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>9.9 ± 1.9</td>
<td>9.3 ± 1.8</td>
<td>9.9 ± 1.8</td>
<td>9.4 ± 1.2</td>
<td>9.7 ± 1.2</td>
</tr>
<tr>
<td>HIIT</td>
<td>10.0 ± 2.2</td>
<td>9.8 ± 1.7</td>
<td>10.0 ± 1.0</td>
<td>9.9 ± 1.5</td>
<td>10.0 ± 0.7</td>
</tr>
<tr>
<td>Control</td>
<td>9.2 ± 1.5</td>
<td>9.7 ± 1.1</td>
<td>9.1 ± 1.3</td>
<td>9.0 ± 0.9</td>
<td>9.4 ± 0.8</td>
</tr>
<tr>
<td>τVO₂p, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>45 ± 12</td>
<td>33 ± 5†</td>
<td>29 ± 11†</td>
<td>26 ± 4†</td>
<td>26 ± 4†</td>
</tr>
<tr>
<td>HIIT</td>
<td>42 ± 8</td>
<td>32 ± 4†</td>
<td>28 ± 4†</td>
<td>26 ± 4†</td>
<td>27 ± 4†</td>
</tr>
<tr>
<td>Control</td>
<td>43 ± 7</td>
<td>41 ± 6</td>
<td>41 ± 7</td>
<td>40 ± 8</td>
<td>45 ± 7</td>
</tr>
<tr>
<td>CI95 τVO₂p, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>4.4 ± 1.3</td>
<td>4.0 ± 1.5</td>
<td>4.1 ± 1.1</td>
<td>3.4 ± 1.1</td>
<td>3.3 ± 1.1</td>
</tr>
<tr>
<td>HIIT</td>
<td>4.4 ± 0.4</td>
<td>4.3 ± 1.1</td>
<td>4.0 ± 0.9</td>
<td>3.2 ± 0.9</td>
<td>3.9 ± 0.7</td>
</tr>
<tr>
<td>Control</td>
<td>4.0 ± 1.1</td>
<td>3.7 ± 0.6</td>
<td>3.8 ± 0.8</td>
<td>4.2 ± 1.4</td>
<td>5.2 ± 1.4</td>
</tr>
</tbody>
</table>

Data are mean (SD). VO₂, oxygen consumption; TD, time delay; A, amplitude; p, primary phase response; τ, time constant; CI95, 95% confidence interval.

* Significantly different from pretraining (P < 0.05); † significantly different from Control (P < 0.05); " significantly different at pretraining than all other timepoints (P < 0.05).
Table 3 Dynamic response characteristics of [HHb + Mb], normalised Δ[HHb + Mb]/Δ\(\dot{V}\)O\(_2\) ratio and total [Hb+Mb], during the intervention for the MICT, HIIT and Control groups.

<table>
<thead>
<tr>
<th></th>
<th>Pretraining</th>
<th>Week 3</th>
<th>Week 6</th>
<th>Week 9</th>
<th>Posttraining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Δ[HHb + Mb] μM.cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>-73 ± 44</td>
<td>-81 ± 69</td>
<td>-79 ± 59</td>
<td>-80 ± 82</td>
<td>-77 ± 57</td>
</tr>
<tr>
<td>HIIT</td>
<td>-56 ± 42</td>
<td>-57 ± 41</td>
<td>-60 ± 42</td>
<td>-53 ± 45</td>
<td>-60 ± 32</td>
</tr>
<tr>
<td>Control</td>
<td>-50 ± 36</td>
<td>-47 ± 29</td>
<td>-55 ± 31</td>
<td>-52 ± 38</td>
<td>-55 ± 31</td>
</tr>
<tr>
<td>Δ[HHb + Mb] A, μM.cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>85 ± 42</td>
<td>95 ± 69</td>
<td>87 ± 46</td>
<td>93 ± 52</td>
<td>87 ± 30</td>
</tr>
<tr>
<td>HIIT</td>
<td>164 ± 115</td>
<td>157 ± 103</td>
<td>159 ± 102</td>
<td>169 ± 105</td>
<td>164 ± 111</td>
</tr>
<tr>
<td>Control</td>
<td>72 ± 60</td>
<td>73 ± 50</td>
<td>69 ± 51</td>
<td>68 ± 55</td>
<td>69 ± 43</td>
</tr>
<tr>
<td>Δ[HHb + Mb] end-exercise A, μM.cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>18 ± 62</td>
<td>14 ± 80</td>
<td>8 ± 45</td>
<td>20 ± 76</td>
<td>13 ± 70</td>
</tr>
<tr>
<td>HIIT</td>
<td>133 ± 103</td>
<td>123 ± 95</td>
<td>116 ± 117</td>
<td>133 ± 119</td>
<td>130 ± 127</td>
</tr>
<tr>
<td>Control</td>
<td>20 ± 65</td>
<td>30 ± 64</td>
<td>21 ± 70</td>
<td>15 ± 67</td>
<td>15 ± 50</td>
</tr>
<tr>
<td>Δ[HHb + Mb] τ, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>16 ± 7</td>
<td>16 ± 6</td>
<td>16 ± 10</td>
<td>15 ± 10</td>
<td>15 ± 6</td>
</tr>
<tr>
<td>HIIT</td>
<td>11 ± 4</td>
<td>13 ± 6</td>
<td>11 ± 7</td>
<td>11 ± 6</td>
<td>11 ± 6</td>
</tr>
<tr>
<td>Control</td>
<td>13 ± 5</td>
<td>12 ± 6</td>
<td>16 ± 9</td>
<td>15 ± 6</td>
<td>15 ± 7</td>
</tr>
<tr>
<td>Δ[HHb + Mb] TD, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>12 ± 4</td>
<td>14 ± 6</td>
<td>13 ± 4</td>
<td>13 ± 4</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>HIIT</td>
<td>14 ± 2</td>
<td>15 ± 4</td>
<td>14 ± 3</td>
<td>13 ± 5</td>
<td>14 ± 3</td>
</tr>
<tr>
<td>Control</td>
<td>14 ± 3</td>
<td>15 ± 2</td>
<td>12 ± 4</td>
<td>13 ± 3</td>
<td>13 ± 3</td>
</tr>
<tr>
<td>Δ[HHb + Mb] τ', s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>28 ± 7</td>
<td>30 ± 7</td>
<td>28 ± 11</td>
<td>28 ± 11</td>
<td>29 ± 6</td>
</tr>
<tr>
<td>HIIT</td>
<td>25 ± 4</td>
<td>28 ± 6</td>
<td>25 ± 8</td>
<td>24 ± 9</td>
<td>25 ± 8</td>
</tr>
<tr>
<td>Control</td>
<td>26 ± 4</td>
<td>27 ± 6</td>
<td>28 ± 8</td>
<td>28 ± 6</td>
<td>28 ± 6</td>
</tr>
<tr>
<td>Δ[HHb + Mb]/Δ(\dot{V})O(_2), μMol.cm.(L/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>138 ± 87</td>
<td>145 ± 82</td>
<td>140 ± 78</td>
<td>150 ± 74</td>
<td>142 ± 62</td>
</tr>
<tr>
<td>HIIT</td>
<td>178 ± 123</td>
<td>180 ± 108</td>
<td>185 ± 102</td>
<td>196 ± 122</td>
<td>193 ± 133</td>
</tr>
<tr>
<td>Control</td>
<td>120 ± 89</td>
<td>117 ± 58</td>
<td>124 ± 77</td>
<td>116 ± 74</td>
<td>124 ± 69</td>
</tr>
<tr>
<td>Normalized Δ[HHb + Mb]/Δ(\dot{V})O(_2) ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>1.15 ± 0.08</td>
<td>1.04 ± 0.10(</td>
<td>^*)</td>
<td>1.05 ± 0.09(^*)</td>
<td>1.04 ± 0.06(^*)</td>
</tr>
<tr>
<td>HIIT</td>
<td>1.20 ± 0.08</td>
<td>1.06 ± 0.06(^</td>
<td>)</td>
<td>1.06 ± 0.05(^</td>
<td>)</td>
</tr>
<tr>
<td>Control</td>
<td>1.14 ± 0.06</td>
<td>1.17 ± 0.14</td>
<td>1.14 ± 0.10</td>
<td>1.16 ± 0.05</td>
<td>1.15 ± 0.11</td>
</tr>
<tr>
<td>Δ total[Hb+Mb], μMol.cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICT</td>
<td>86 ± 50</td>
<td>76 ± 54</td>
<td>93 ± 63</td>
<td>108 ± 59</td>
<td>109 ± 67</td>
</tr>
<tr>
<td>HIIT</td>
<td>127 ± 65</td>
<td>100 ± 104</td>
<td>110 ± 66</td>
<td>103 ± 60</td>
<td>112 ± 73</td>
</tr>
<tr>
<td>Control</td>
<td>63 ± 35</td>
<td>68 ± 54</td>
<td>80 ± 39</td>
<td>79 ± 47</td>
<td>61 ± 50</td>
</tr>
</tbody>
</table>

Data are mean (SD). TD, time delay; A, amplitude; [HHb + Mb], deoxygenated haemoglobin and myoglobin concentration; τ, time constant; τ’ [HHb + Mb], effective time constant (τ + TD); normalized Δ[HHb + Mb]/Δ\(\dot{V}\)O\(_2\), calculated as the 20 to 150 s average of the normalized Δ[HHb + Mb]-to-Δ\(\dot{V}\)O\(_2\) ratio; total[Hb+Mb], total haemoglobin and myoglobin concentration.

* Significantly different from pretraining (\(P < 0.05\)); † significantly different from Control (\(P < 0.05\)); \(^b\) significantly different from MICT & Control (\(P < 0.05\)).