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Abstract 

Statistical methods are formulated for fitting and testing percolation-based, spatio-

temporal models that are generally applicable to biological or physical processes that evolve in 

spatially distributed populations.  The approach is developed and illustrated in the context of the 

spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other 

scenarios.  The particular model considered represents processes of primary and secondary 

infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the 

hosts.  Bayesian methods for fitting the model to observations of disease spread through space 

and time in replicate populations are developed.  These use Markov chain Monte Carlo methods 

to overcome the problems associated with partial observation of the process.  We also consider 

how model testing can be achieved by embedding classical methods within the Bayesian 

analysis. In particular we show how a residual process, with known sampling distribution, can be 

defined.  Model fit is then examined by generating samples from the posterior distribution of the 

residual process, to which a classical test for consistency with the known distribution is applied, 

enabling the posterior distribution of the P-value of the test used to be estimated.  For the 

Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses 

regarding the dynamics of disease transmission and yield new evidence of environmental 

heterogeneity in the replicate experiments. 
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1.  Introduction 

In the literature of spatio-temporal modeling there is a large body of work relating to the 

broad area of percolation.  This is a natural approach for representing biological or physical 

processes that evolve through a spatially dispersed population when the dynamics of the process 

are determined by local interactions.  It has been applied to inter alia the spread of forest fires 

(Cox & Durrett, 1981), the dynamics of intereracting species in ecosystems (Wissel, 2000) and to 

the spread of infectious diseases (Kuulasmaa, 1982; Bailey et al. 2000; Otten et al. 2004). It 

seems particularly suitable for the systems of study in this paper which deal with host-pathogen 

interactions in managed botanical populations that may naturally be represented on a lattice.  

Research on percolation tends to focus on what may loosely be described as emergent 

behaviour.  This deals with the large-scale and long-term, asymptotic properties of percolation 

processes, for example deriving critical values of parameters at phase transitions between 

extinction and persistence of a process.  In the study of epidemic processes this work is important 

for characterizing conditions under which a disease may be expected to invade a population, or 

determining the level of control required to ensure ultimate extinction. 

In order to inform studies that attempt to predict the dynamics of a system using 

percolation models it is necessary to obtain statistically valid estimates of key parameters.  There 

is, however, relatively little research into statistical methodology for parameter estimation in 

percolation models.  A common approach when modeling spatio-temporal systems is to replace a 

spatially-explicit model with a non-spatial model that is then fitted to non-spatial summaries of 

the data (e.g. Kleczkowski et al., 1996, Gibson et al., 1999).  In the context of modeling 

epidemics these summaries may typically take the form of disease progress curves that record 

numbers of infectious or symptomatic individuals over time. More recently, the approach has 

been extended to fit semi-spatial models (Filipe et al., 2004), which capture some of the spatial 

nature of epidemic processes by representing the evolution of low-order correlations in spatial 

pattern in addition to disease incidence.  Such approaches, although convenient and useful, do 

not fully exploit experimental data that are explicitly spatial, such as those arising from the 

intensively mapped microcosm experiments considered in this paper. A further disadvantage of 

modeling only non-spatial summaries of spatial systems is that explicit spatial data cannot 

obviously be used to assess model fit.  This makes it harder to distinguish between competing 
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models for a process, when the differences in models are not strongly reflected in the non-spatial 

summaries. 

Here we describe and test methods for parameter estimation and model assessment for 

spatio-temporal models using extensive data from microcosm experiments involving the spread 

of a soil-borne disease through replicated seedling populations. Although the methods are 

applied to a specific laboratory-based system, they are applicable to a wide class of natural and 

semi-natural systems.  Indeed, a closely related approach has been taken for fitting spatio-

temporal models to disease spread in populations of citrus (Gibson 1997a, 1997b; Gottwald et al. 

1999).  The current study is distinct from this past work through its explicit treatment of times, 

rather than mere order, of infections and its focus on models with short range interactions, a 

specialisation which we exploit in the design of efficient algorithms for model fitting.  The 

approach is fundamentally Bayesian and makes extensive use of modern computational methods 

– in particular Markov chain Monte Carlo (MCMC) methods – in order to take account of the 

incomplete nature of the experimental observations. 

An important feature of the current study is the development of tests of model fit that take 

account of the spatial nature of the data.  This we achieve by defining the notion of a stochastic 

residual for each individual in a population and then investigating the joint posterior properties of 

these.  Since the sampling distribution of these residuals is known, we are able to test the model 

by carrying out a classical test of conformity to this distribution, treating the posterior 

distribution of a resulting P-value as a representation of evidence against the model fit.  The idea 

of considering the posterior distribution of a classical test statistic, specifically a likelihood ratio, 

has recently been examined in other contexts by Aitkin et al. (2005).  

Our aim in this paper, then, is to present this methodology and illustrate its use in the 

context of a particular host-pathogen system (Rhizoctonia solani Kühn that causes damping-off 

disease in a population of radish seedlings) described in section 2, for which a percolation 

approach is believed to be valid.  Section 3 presents a spatio-temporal stochastic model for this 

disease which represents the spread of symptoms in the population as a percolation process and 

allows for dynamical changes in the rates of disease transmission of an earlier pseudo-spatial 

model (Filipe et al. 2004).  Section 4 describes how the model parameters can be estimated in a 

Bayesian framework and gives a detailed description of the MCMC algorithms used to carry 

this out.   In Section 5 we describe the process of generating latent stochastic residuals and how 
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to use them to investigate the posterior distribution of a P-value to quantify model fit.  In 

section 6, we apply the techniques to spatio-temporal data of disease progress from the 

microcosm experiments and discuss the biological conclusions that can be drawn from the 

analyses.  Finally, Section 7 discusses some further directions for the work. 

 

2.  Experimental systems 

As a model system we consider microcosm experiments on epidemics of R. solani 

described more fully in Otten et al. (2003) and Filipe et al. (2004).  The data record the observed 

development of damping-off disease on populations of radish seedlings (cv. Cherry Belle) caused 

by R. solani, a fungus that attacks hosts in the early stages of development, mature plants rapidly 

becoming resistant to parasitism (Deacon 1980).  They were obtained for 13 replicate 

microcosms with low and high levels of initial inoculum (giving 26 experimental units). For each 

replicate, the data record daily the numbers and positions of diseased seedlings in a population of 

414 plants arranged in an 18 × 23 rectangular array grown in clear plastic boxes.  Rhizoctonia 

solani was added in the form of mycelial discs placed adjacent to randomly selected plants in 

each box.  For low-inoculum and high-inoculum replicates, 15 discs and 45 discs were used, 

respectively. Host genotype and density, water availability, light and temperature were strictly 

and identically controlled in each replicate. Accordingly, differences in disease dynamics 

between treatments may be assumed to reflect differences in primary infection arising from 

different initial inoculum densities as well as demographic variability in disease transmission 

amongst replicates. The positions of damped-off seedlings were recorded daily for 17 days after 

seedling emergence. Figure 1 shows the evolution of a low-inoculum replicate and depicts the 

locations of symptomatic plants at a subset of the recorded times. 

Filipe et al. (2004) developed a ‘semi-spatial’ stochastic model for this process.  This was 

obtained by applying spatial moment-closure techniques from statistical physics (pair-wise 

approximation – see e.g. Filipe & Gibson (1998, 2001)) to an explicitly spatio-temporal model 

for the disease transmission process.  Parameters in this non-spatial approximation were 

estimated for each treatment by maximum-likelihood fitting to the incremental numbers of 

infections (averaged over replicates) observed in the experiments.  A potential limitation of the 

analysis of Filipe et al. (2004) is that by fitting to incremental numbers of diseased plants 
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averaged over replicates, within-treatment differences in replicates cannot be investigated.  

Furthermore, it does not make explicit use of the spatial nature of the data.  

By contrast, the methods introduced in this paper fully exploit the availability of 

replicated spatial data to analyse the dynamics of a percolation process. We illustrate the 

application of the methods to answer epidemiologically important questions. These concern the 

analysis of treatment effects on transmission parameters, the identification of time-varying rates 

of host-to-host transmission, and the occurrence of variability in parameter estimates amongst 

replicate epidemics within treatments. Our prior expectation is that differences in disease 

dynamics between the low and high inoculum density treatments can be attributed to the 

different levels of inoculum only and not to systematic differences in transmission parameters 

between the treatments. In considering host-to-host transmission, we wish to determine whether 

or not the spatio-temporal analysis provides evidence supporting the time-varying rate of 

transmission, specifically a ‘rise-and-fall’, suggested by previous analyses (Otten et al. 2003, 

Filipe et al. 2004). Finally, and most importantly we demonstrate the power of the methods to 

detect possible variability between replicates and to assess the validity of the assumptions 

underlying the formulation of a given model.  

 

3.  A percolation based model for disease spread 

In the model the population of seedlings is represented as being located at the vertices of 

a finite square lattice LLLL .        The epidemic is initiated at time t = 0, when a subset of the sites X0 ⊆ LLLL  

is inoculated with the fungus.  Each x ∈ X0 develops symptoms due to primary infection by this 

initial inoculum at a random time Tx ~ Exp(a) (if x is not already symptomatic due to infection 

via secondary infection from one of its four nearest neighbours).  The random variables {Tx | x∈ 

X0} are assumed to be independent.  Seedlings can also become symptomatic due to secondary 

infection.  Specifically, if a site x develops symptoms at time t, then a neighbouring site y 

develops symptoms at t + Txy (if it has not already become symptomatic due to infection from 

another source) where 

Txy ~ Exp(φ(t)),         (3.1) 
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so that E(Txy) is a function of the time at which x became symptomatic.  We assume that the 

random variables {Txy | y is a nearest neighbour of x} are independent, analogous to bond 

percolation.  The function φ(t) reflects the formulation of Filipe et al. (2004).  Specifically, we 

represent the biological hypothesis of a rise and fall in the secondary infection rate by 

( )( )( )( )2

0 1 2( ) exp log 4 /t b b t bφ = − + . Other functions could equally well be proposed.  The 

model used here therefore has four free parameters.  These are: a, the rate of primary infection 

from initial inoculum; b0, which (loosely) represents the peak rate of secondary infection; b1 

which controls the range of variation in the secondary infection rate over time; and b2 which 

determines the timing of the peak rate of secondary infection.  In this paper we have changed our 

time origin from that used in Filipe et al. (2004) so that t = 0 here corresponds to the day of 

emergence of the seedlings (observed to be t = 4 by Otten et al. (2003)).  Note, therefore, that b2 

corresponds to the timing of peak rate as measured on the scale used in Filipe et al. (2004). The 

replicates were generally observed until 17 days after emergence so that tmax = 17.   

Realisations of this stochastic model for the onset of symptoms in the lattice can be readily 

simulated. Our main purpose in this paper is to use the above model to interpret experimental 

observations in terms of fundamental processes rather than to analyse the stochastic dynamics of 

the process.  Therefore we do not present extensive simulations in this paper.   

 

4.  Bayesian fitting of percolation models 

Suppose that we observe the population of plants in the lattice continuously from t = 0 to 

t = tmax and record the precise times of onset for symptomatic seedlings during this period.  In 

this case the observations would take the form of a lattice of times {t(x) | x ∈ LLLL  }, precisely 

recorded for all sites displaying symptoms at some time during [0, tmax] and censored for non-

symptomatic sites.  We suppose that there are N sites in the lattice of which k become 

symptomatic before time tmax.  Denoting the observations by y, and the model parameter vector 

as θθθθ = (a, b0, b1, b2), we formulate a parameter likelihood L(θθθθ    | y) as follows. 
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Let x1, …, xk, xk+1, …, xN denote the sites in the lattice arranged according to the order in 

which symptoms appear (with xk+1, …, xN representing any ordering of the unsymptomatic sites 

at tmax).  It follows that y is observed if and only if , 

1. for each site xi, i = 1, 2, .., k, then the earliest time at which xi becomes infected 

from a contacting source (primary infection or previously infected neighbour) is t(xi), 

2. for each site xi, i = k+1,  …, N, the earliest time at which xi becomes infected from 

a contacting source exceeds tmax. 

It can be shown that the parameter likelihood can be expressed as a product of terms, one 

for each site, representing the contribution to the likelihood arising from constraints 1) or 2) 

above.  That is  

( ) ( ) ( ) ( )( ) ( ) ( )( )∏∏
+==

−=
N

ki
kmax

k

i
ii tttftttfyL

1
12

1
111 ,,...,;,,...,;| θxxθxxxθ       (4.1) 

For a given site xi ∈ {x1, …, xk}, with m previously infected neighbours 
nj

x , 1 ≤ n ≤ m, 

and primary inoculum 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )∏∑
=

−

=
− −−
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
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n
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i

n
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 (4.2) 

For i>k, if xi has m previously infected neighbours and primary inoculum the 

corresponding factor is 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )∏
=

−
− −−=

m

n
jij

at
ii nn

i tttetttf
1

112 )(),(exp,,...,; xxbxθxxx x φ .      (4.3) 

The corresponding expressions for sites without primary inoculum are similar but omit terms 

involving the parameter a.  

An important property of the likelihood (4.1) – (4.3) is that the factor contributed by any 

site is a function of the history of that site and of its four nearest neighbours in the lattice only.  It 

is perhaps worth noting that, although the likelihood depends on the history, the process itself is 

Markovian with the next event in time determined only by the current state of the system.  This 

will be particularly useful for the MCMC computations carried out later, in that changes 
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proposed to the time of onset of symptoms for one site only affect the calculation of at most 5 

terms in (4.1). 

In practice however, the exact times of onset of symptoms are not observed, since the 

population is observed at discrete times t1, …, tr say.  If a site is recorded as symptomatic for the 

first time at time tj, then the observations merely constrain its time to lie within [tj-1, tj].  We 

denote these censored observations by y′, and let Y′′′′ denote the set of all outcomes y (i.e. precise 

times in (0, tmax)) that are consistent with the observation y′  Therefore the desired likelihood 

takes the form of an integral, namely 

( ) yyθyθ
Yy

dLL ∫
′∈

=′ |)|(         (4.4) 

This integral is not in general analytically tractable.  Nevertheless we can apply MCMC methods 

within a Bayesian framework to solve the problem. 

Parameter estimation using MCMC 

This approach is now commonly used in the fitting of stochastic epidemic models to 

partial observations (Gibson & Renshaw 1998, O’Neill & Roberts 1999, O’Neill & Becker 

2001).  It entails treating the unobserved aspects of the process as nuisance parameters and 

investigating the posterior distribution of these jointly with the model parameters.  Inference on 

model parameters can then be made from their marginal distributions. 

Let Θ denote the model parameter space and assign a prior distribution, denoted p(θθθθ), for 

θθθθ.  Then, given the censored observations y′, the joint posterior density on Θ×Y′′′′ is defined by 

π(θθθθ, y | y′′′′ �) ∝ p(θθθθ)L(θθθθ |y). 

Since L(θθθθ    | y) can be calculated using (4.1)-(4.4), then we know π(θθθθ, y | y′′′′) up to an unknown 

constant of proportionality and MCMC methods are particularly appropriate.  We use a simple 

algorithm that uses mainly Metropolis-Hastings updates (Tierney 1994).  The algorithm provides 

adequate performance in this context, although more sophisticated implementations could be 

carried out. 

A Markov chain is defined on Θ × Y′′′′.  Each iteration of the chain involves proposing 

moves of two types to the current state vector (θθθθ, y): updates to the exact times of infection for 
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plants becoming symptomatic in [0, tmax], and updates to the parameters θθθθ.  These are effected as 

follows. 

Updates to components of y, are effected by considering each site that becomes infectious in      

[0, tmax] in turn.  For the chosen site, a new infection time is proposed uniformly from the 

permissible range [tj-1, tj] (where tj denotes the observation time when the site was first observed 

to be infected), giving a new configuration yp.  The new time is accepted with probability 

( )
( ) 






=

yθ
yθ
|

|
,1min

L

L
p

p

acc  . 

Infectious sites are considered in a fixed order in contrast to random scan formulations. 

Updates to parameters are effected by proposing and accepting or rejecting changes to the 

current values of a, b0, b1 and b2 in turn.  A new value of the parameter is proposed uniformly 

from a finite interval centred on the current parameter value, to give a new parameter vector θ θ θ θ p.  

This new vector is accepted with probability 

( ) ( )
( ) ( ) 






=

yθθ

yθθ
p

|

|
,1min

Lp

Lp
p

p

acc . 

Any proposed values of parameters that fall out of the range of the prior are naturally rejected 

since the prior density is zero at such points.  The widths of the uniform windows for the 

proposed updates to each component of θθθθ are selected for each component, and a given replicate, 

on the basis of trial runs to give favorable mixing properties for the resultant chains.  Several 

authors (e.g. Besag et al., 1995) indicate acceptance rates for Metropolis-Hastings updates in the 

range 0.2 – 0.5 as leading to efficient mixing. 

We also consider an alternative implementation of a Markov chain sampler for this 

problem that considers a more complex state space to that above.  The second approach allows 

an independent algorithm to be developed that can be compared to the first in order to check the 

validity of the posterior densities obtained.  It may also have superior mixing properties when the 

period between successive observations is large.  Specifically we extend the state space by 

considering not only the precise times of the onset of symptoms for each site becoming 

symptomatic in [0, tmax], but also an array s which denotes the source of infection for each 

symptomatic site.  At most there are 5 possibilities for the source – primary infection or infection 
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from one of the (potentially infected) four neighbours.  The new likelihood L(θθθθ| y, s) is similar to 

that defined by (4.1) – (4.3).  However the contribution from a symptomatic site (4.2) is different 

in that the summation, ( )
1

( ),
n

m

j
n

a tφ
=

 + 
 
∑ x b  is replaced by a single term corresponding to the 

particular source of infection – a, if the infection is due to primary infection, or ( )( ),
nj

tφ x b  if 

the infection is acquired from the neighbour at 
nj

x .   

The MCMC algorithm must also be altered for the new state space.  When proposing a 

new infection time for a site, x, infected between [tj-1, tj] the new time is now proposed uniformly 

from [tl, tu] where tl is the supremum of time of infection of the site infecting x and tj-1, and tu is 

the infimum of tj and the times of infections of any sites infected by x.  This ensures that the new 

time proposed will be consistent with the ‘active’ transmission pathways specified by s.  

Following updating of the time of infection of a site, the source is updated by selecting from the 

potential sources (primary inoculum if present, infection from nearest neighbours).  This can be 

done via a Gibb’s step.  Primary infection and infection from a previously infected neighbour 

nj
x , n = 1, ..., m, are selected with probability proportional to a and ( )( ),

nj
tφ x b  respectively.  

With this second formulation, it is possible, for suitably chosen prior densities, to update the 

primary infection parameter, a, via a Gibb’s step, although we do not do so in this paper. 

The above methods can be applied to analyse a set of replicates jointly (as we do in 

section 6) simply by replacing the likelihood L(θθθθ|y) by the joint likelihood ( ) ( )∏=
i

iyy |L|L j
θθθθθθθθ  

where yi represents the infection times for the ith replicate, when updating components of θθθθ. 

Both formulations of the algorithm described above are implemented using the C 

programming language with the following minor modification to the above recipe.  In all 

replicates a few infections that were not consistent with nearest-neighbour spread were 

encountered.  This can be seen from Figure 1 where not all symptomatic plants are connected to 

a primary infection via a sequence of nearest-neighbour links.  Consequently the models and 

algorithms above would be inapplicable due to the problem of vanishing likelihoods.  There are 

several ways to accommodate this difficulty.  The solution we choose is to introduce a further 

parameter δ, (fixed to be 10-7) representing a primary infection rate presented to every plant in 
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the population.  This additional source could be interpreted biologically as infection due to 

inadvertent contamination and the model can explain unconnected symptomatic plants as arising 

from this latter process.  As δ is very small, the MCMC algorithm ‘attributes’ the minimum 

number of infections to this process (usually of the order of 10 – 30 per replicate) in the pattern. 

We appreciate that this solution to handling non-connectivity is imperfect and discuss alternative 

approaches to resolving the problem in the final section of the paper. 

 

5.  Model checking using stochastic residuals 

A principal aim of the paper is to describe and illustrate methods for assessing validity of 

modeling assumptions in percolation models and spatio-temporal models in general.  We remark 

that there is a well established Bayesian methodology for model comparison (Draper, 1994).  

This approach would present considerable challenges in terms of implementation of the requisite 

computational algorithms (that would of necessity use reversible-jump MCMC (Green, 1995)), 

and the resulting model posterior probabilities are known to be sensitive to the choice of priors 

for model parameters.  This presents a particular difficulty if model parameter spaces are non-

nested.   Instead we proceed to construct a set of stochastic residuals whose sampling distribution 

is known, and is independent of model parameters, and then to test the ‘reconstructed’ residuals 

for consistency with this known distribution using classical tests embedded in the Bayesian 

framework.   

Using the notation of Section 4, suppose that we simulate the stochastic process in the 

following way.  To each site x ∈ LLLL  we associate a random value rx, drawn from a U(0, 1) 

independently over sites.  Now given the model parameters θθθθ, we obtain a realization of the 

disease spread process from {rx} by the following algorithm, in which X(t) denotes the set of 

infected sites at time t.  Let Yx be the random variable denoting the time at which site x becomes 

infected, then: 

i)   set t = 0, X(t) = ∅, 

ii)  for each uninfected site, x, calculate yx where rx = P(Yx > yx | θθθθ, X(t), no other site 

infected in [t, yx]), 
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iii) select the site x with minimum yx to become the next infection and set t = yx for this 

minimum value.  Append the site x to the infected set X(t), repeat (ii) and (iii) until all 

the sites are infected. 

Now it can be easily verified that given θθθθ, the above construction maps {rx} to y by a 1-1 

correspondence, hθθθθ, when complete infection of the population occurs.  When the yx are 

censored, due to observation terminating before total infection, then given the censored y we can 

define the set hθθθθ
-1(y), to be all residual processes {rx} that would yield the censored times y under 

the mapping hθθθθ.   

Now, returning to the Bayesian analysis of Section 4, it follows that since the conditional 

density of r given θθθθ and y is uniform on hθθθθ
-1(y), we can obtain the posterior density π(r| y′′′′) 

directly from the posterior π(θθθθ, y | y′′′′).  Under the assumption that the observations are generated 

by first drawing θθθθ from the prior and generating the infection times from the assumed model 

parameterised by θθθθ, the residual process r is a realisation of a set of i.i.d. U(0, 1) random 

variables.     We consider the P-value from a standard test, P(r), to quantify evidence against H0: 

the {rij} are i.i.d. U(0, 1) and investigate the posterior density of P(r) given y′′′′.  If the latter 

density suggests we would reject H0 with high posterior probability, then we should question the 

assumed combination of prior and model as the mechanism for generating the observations. In 

carrying out this process, we omit from the classical analysis any residuals for any sites that have 

been infected via the spurious process (controlled by the fixed parameter δ).  

The particular test used to assess the residuals is the Kolmogorov-Smirnov (K-S) test 

(Silvey 1970).  Given a sample of r from the posterior, we order r from smallest to largest r(1), … 

, r(N′) where N′ is the number of sites in the lattice minus those infected by the ‘spurious’ process.  

The test statistic used is 

T(r) = max{ |r(i) – i/N′| },  

this being the modulus of the largest deviation between observed and theoretical distribution 

functions.  A P-value for the test (i.e. the probability of observing a test statistic as or more 

extreme than T(r)) can be calculated approximately (see e.g. Glasbey et al., 1986) as  

P(r) = 2exp(-2NT(r)2).       (5.1) 
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This approximation breaks down if T(r) is small and indeed may give values exceeding unity, but 

it is accurate for small P-values (the frequency of which interests us most in detecting poor fit of 

the model). 

6.  Results 

The methods of sections 4 and 5 are applied to analyse the data described in section 2 by 

fitting the percolation model of section 3.  In the analyses that follow we assume that all 

parameters have independent uniform priors over finite regions of the positive real axis which 

are selected to be wide compared with the region over which the posteriors are informative.  This 

is an attempt to represent prior ignorance of model parameters.  Results for alternative choices of 

vague priors for parameters are broadly similar to those presented for the uniform case.     

Figures 2 – 5 show histogram estimates of the posterior marginal densities of the model 

parameters with the high and low treatments analysed separately throughout. The particular 

Markov chain used is the second of the formulations in Section 4, in which the source of 

infection is represented in the components of the state vector.  These graphs show the posterior 

densities when the 13 replicates for a treatment are analysed jointly (i.e. under the assumption of 

common parameters across replicates) and separately.  Histogram estimates of the posterior 

densities for each parameter were obtained from 105 iterations of the chain (where each iteration 

involves proposing updates to all the parameters and all the components of y), following a burn-

in period of 1000 iterations.  Although we do not show details here, we remark that studying the 

autocorrelation of trace-plots and robustness of posterior inferences to starting values of 

parameters and infection times suggests that the chains mix well. Moreover, posterior inferences 

on parameters obtained using the first algorithm described in section 4, in which the infecting 

source is not represented in the state space, are identical to those shown here, providing further 

evidence that a valid picture of the posterior distribution has been obtained. 

The posteriors for the joint analyses are very informative.  There is little evidence of any 

difference in parameter values between treatments except for the case of b0 whose value for the 

low-inoculum treatment appears to be smaller.  However, we note that, within treatments, the 

posterior densities that arise from fitting the model to replicates separately vary substantially for 

all four parameters. For example in the high-inoculum case there is no value of the primary 

infection rate, a, estimated from a given replicate, that does not appear very extreme with respect 
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to the posterior density for at least one other replicate.  This suggests that parameters differ 

among  replicates within each treatment. 

To investigate the validity of the model with common parameters amongst replicates 

within treatments we consider the predictive distribution of the number of infected individuals 

with model parameters fixed at their posterior marginal means for the joint analyses.  Initial 

conditions (i.e. sites of primary inoculum and missing plants) are selected to match the 

experiment with an equal number of simulations carried out for each compatible initial 

configuration.  Equal-tailed 95% intervals for the predicted number of infective plants I(t) at the 

observation times are displayed in Fig. 6, along with the observed values of I(t) for the 13 

replicates for each treatment.  Based on these, it could be suggested that the model with common 

parameters broadly captures the variability in the temporal evolution of I(t) observed over 

replicates for each treatment. 

In assessing model fit by comparing observed and predicted dynamics of I(t) we have 

ignored all the spatial information in the data. By contrast the residual analysis of Section 5, 

which does take account of spatial information, tells a very different story, leading to different 

inferences about parameter variation amongst replicates.  Tables 1(a) and (b) give descriptive 

summaries for the posterior distributions of the K-S P-values, as described in Section 5, when the 

replicates are analysed assuming common parameters within treatments.  For each replicate, 

these summary statistics are based on a sample of 20,000 P-values obtained from the posterior by 

calculating the K-S P-values from the vector of residuals for each sample.  From these it is clear 

that for nearly all replicates, the posterior density of the P-value is concentrated on low values, 

suggesting that a classical observer of the residual process would reject the hypothesis that it 

were i.i.d. U(0, 1) for most replicates with very high probability.  For each replicate, this 

probability is shown for the commonly used 5% testing level.  On the basis of these results we 

suggest that the model with common parameters within treatments may not be valid.  We remark 

that the method of residual analysis is able to detect this lack of fit when measures of fit based on 

cruder summaries of the process (associated with goodness-of-fit to the temporal data alone) may 

fail.  

Table 2 shows the corresponding posterior summaries when the replicates are analysed 

separately. Compared with the common-parameter analysis, the densities of P-values support 
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higher values and rejection at the 5% level becomes generally less likely.  However, we note that 

there is still evidence of a lack of fit in that the posterior expectation of the number of replicates 

for which the classical observer rejects the hypothesis of i.i.d. U(0, 1) residuals at the 5% level is 

high – 6.9 and 5.3 out of 13 for High and Low treatments respectively. This is addressed further 

in the discussion.  

From the observed disparity in posterior parameter densities between replicates seen in 

Figures 2-5 together with the improvement in measures of fit when the model is fitted to 

replicates separately we conclude that there is heterogeneity among replicates for the same 

treatment.  From inspection of the marginal posterior densities for parameters for replicates 

separately, there  is no evidence of systematic differences between the two treatments.   

Our spatio-temporal analyses suggest qualitative conclusions that agree with earlier 

analyses of the data (Otten et al., 2003; Filipe et al., 2004).  The secondary infection process 

obeys a ‘rise-and-fall’ in the rate.  This is shown by the support for non-zero values of b1 for 

most of the replicates.  Where a pronounced variation is suggested, inspection of posteriors for b2 

suggests that the peak secondary rate seems most frequently to be located in the interval 5 to 15 

days after planting (1 to 11 days after emergence of seedlings).  In replicates where little 

variation in secondary infection rate appears to be taking place (evidenced by the posterior for b1 

supporting small values) little information can be gained on the timing of the peak.  

 

7.  Discussion 

 In this paper we have presented and illustrated methods for fitting spatio-temporal 

stochastic models with nearest-neighbour interactions to intensively mapped observations of 

epidemics. In particular, the paper provides a general methodology that can be adapted to allow 

percolation models to be used directly in the analysis and interpretation of observations of spatio-

temporal processes. As such it has many potential applications beyond the botanical epidemics 

considered here. As with earlier work (e.g. Gibson, 1997; Gottwald et al. 1999), the approach 

uses Bayesian methods coupled with Markov chain techniques to explore parameter posterior 

densities.  Moreover we have shown how, by defining a spatial residual process with fixed 

statistical properties, it is possible to assess the fit of a given model by incorporating classical 
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tests within the Bayesian framework.  This approach to model assessment provides a simple 

alternative to Bayesian model comparison methods (e.g. Draper, 1994). The methods have been 

illustrated by fitting a continuous-time, spatial model for observed spread of damping-off 

symptoms in radish infected by R. solani to data from microcosm experiments, and assessing the 

fit of the model.  The particular model fitted was formulated to reflect the modeling assumptions 

of earlier analyses (Filipe et al. 2004) but we stress at this point that all the methods presented 

can be readily adapted to a wide range of alternatives. 

With regard to the particular system considered, our results agree with earlier analyses 

that suggest that there is little systematic difference between the two treatments (high and low 

levels of primary inoculum) in the experiment. This is consistent with biological intuition, since 

there is no a priori reason why changes in the amounts of initial inoculum would systematically 

affect parameters concerned with primary and secondary transmission in a spatially-explicit 

model. Our results, however, do show that there is variation in transmission of infection amongst 

replicates within treatments.  This latter claim is substantiated by the wide disparity between 

marginal posterior densities of the parameters for the different replicates.  Further evidence is 

provided by the residual analysis which suggests that a model with common parameters over 

replicates within a treatment fits poorly, while the fit improves greatly when parameters are 

allowed to vary between replicates.   Earlier non-spatial analyses did not provide evidence of this 

variability and this illustrates the power of the present analysis which takes account of all spatial 

and temporal information in the data.  The present analysis also confirms the findings of earlier 

work regarding the time-varying nature of the secondary infection rate for this host-pathogen 

system.  There is some evidence for lack-of-fit to the model from the residual analysis of 

individual replicates. We do not see this as a cause for concern.  The fitted model is specified by 

only four free parameters and the functions within it are selected on the basis of qualitative 

similarity with biological hypotheses and earlier formulations of related non-spatial models.  On 

the other hand, the residual analysis takes account of the totality of a very rich set of data that 

includes disease history of every site in the lattice.  It should not be surprising that some lack of 

fit is detected.  Perhaps we should be surprised that the evidence against such a simple model 

provided by such a comprehensive data set is not stronger. 

The occasional lack of connectivity in the disease patterns invalidates the strict nearest-

neighbour assumption made in our basic model.  In this paper we overcame this in an ad hoc 
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way, by extending the model to allow for non-nearest neighbour secondary or unexpected 

primary infections at a small, fixed rate.  Alternatively, we could have retained the nearest-

neighbour infection process by extending the model to include an additional state in which a 

plant is infective but not yet symptomatic with newly infected plants staying in this state for a 

random time until emergence of symptoms.  This model is not contradicted by an unconnected 

pattern of symptomatic sites since the underlying pattern of infected sites may nevertheless be 

connected. Ongoing investigations with this model suggest that it has some merits. However, it 

may explain the observations poorly when ‘spurious’ infections are observed at large distances 

from other infections.  In the latter case, a large number of intervening asymptomatic sites must 

be imputed in order to ensure connectivity of the infected sets.  Moreover, the introduction of an 

unobservable asymptomatic state leads to sensitivity of posterior inferences to the choice of prior 

parameter density, not encountered for the simpler model.  A second approach to coping with 

occasional lack of connectivity would be to allow longer range interactions in the disease 

transmission process as in Gibson (1997a,b), at the expense of the computational convenience of 

working with the nearest-neighbour model. 

There are several avenues for future research leading from the present work.  Clearly 

there is potential for extending the range of applications to other spatio-temporal processes most 

notably for ecological interactions involving competing species, as well as for other 

epidemiological models.  Within the current system, the methods can be used in combination 

with further experimentation, to quantify effects of chemical and biological control or of 

different soil types on variability in transmission dynamics amongst replicate epidemics. It is 

also being used to analyse the spread of disease through mixtures of host species that differ in 

susceptibility (cf. Otten et al. 2005, for a description of the biological processes). Current work is 

also directed towards extending the percolation paradigm to incorporate more biological realism, 

in particular to allow for interference and synergy amongst infected individuals that challenge a 

common susceptible individual on a lattice.   
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Table 1.  Estimated mean, and quartiles for posterior distribution of P-values for a K-S test of the 

residuals when common parameters within treatments are assumed.  These are estimated from 

20,000 independent samples from the posterior distribution of the vector of residuals for each 

replicate.   

 
a) High inoculum 

mean  median  LQ  UQ  Pr(p<5%) rep 
0.013454 0.008933 0.003938 0.017715 0.9706  H1 
0.000024 0.000006 0.000002 0.000020 1.0000  H2 
0.000048 0.000015 0.000005 0.000046 1.0000  H3 
0.002916 0.002039 0.001029 0.003757 1.0000  H4 
0.136859 0.121301 0.070754 0.189353 0.1508  H5 
0.075692 0.061481 0.033481 0.101138 0.4054  H6 
0.014030 0.010434 0.005457 0.018893 0.9794  H7 
0.000000 0.000000 0.000000 0.000000 1.0000  H8 
0.000024 0.000009 0.000003 0.000026 1.0000  H9 
0.552893 0.540598 0.388507 0.707525 0.0014  H10 
0.000002 0.000000 0.000000 0.000002 0.9844  H11 
0.000000 0.000000 0.000000 0.000000 1.0000  H12 
0.086550 0.067288 0.035668 0.116220 0.3708  H13 
 
 

b) Low inoculum 
 
mean  median  LQ  UQ  Pr(p<5%) rep 
0.085966 0.063765 0.030051 0.118423 0.4036  L1 
0.016515 0.011087 0.004239 0.022995 0.9412  L2 
0.025164 0.018007 0.008519 0.034758 0.8724  L3 
0.001911 0.001254 0.000602 0.002506 1.0000  L4 
0.000126 0.000034 0.000009 0.000116 1.0000  L5 
0.067819 0.052805 0.024010 0.097047 0.4804  L6 
0.000045 0.000017 0.000005 0.000048 1.0000  L7 
0.000004 0.000000 0.000000 0.000001 1.0000  L8 
0.000030 0.000006 0.000001 0.000022 1.0000  L9 
0.003341 0.001897 0.000737 0.004192 0.9998  L10 
0.000001 0.000000 0.000000 0.000001 1.0000  L11 
0.001243 0.000678 0.000257 0.001549 1.0000  L12 
0.051377 0.027275 0.008475 0.069362 0.6560  L13 
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Table 2.  Estimated mean, and quartiles for posterior distribution of P-values for a K-S test of the 

residuals when the model is fitted to each replicate separately.  These are estimated from 20,000 

independent samples from the posterior distribution of the vector of residuals for each replicate.  

 a)  High inoculum 

 
mean  median  LQ  UQ  pr{p<5%} rep 
0.052114 0.011119 0.001752 0.051376 0.7465  H1 
0.206157 0.094937 0.023089 0.300549 0.3769  H2 
0.281590 0.161915 0.047275 0.425640 0.2693  H3 
0.031162 0.005034 0.000706 0.027090 0.8288  H4 
0.213550 0.103440 0.022493 0.321352 0.3712  H5 
0.382658 0.305408 0.099617 0.619855 0.1671  H6 
0.412586 0.381779 0.178334 0.610587 0.0828  H7 
0.056309 0.014313 0.002553 0.063408 0.7116  H8 
0.040092 0.008516 0.001360 0.040168 0.7842  H9 
0.254628 0.173918 0.045907 0.408351 0.2633  H10 
0.170810 0.064701 0.014189 0.225905 0.4547  H11 
0.020977 0.002134 0.000247 0.013154 0.8952  H12 
0.007638 0.000434 0.000042 0.003514 0.9619  H13 
 

 b)  Low inoculum 
 
mean  median  LQ  UQ  pr{p<5%} rep 
0.118601 0.073594 0.024119 0.171492 0.3992  L1 
0.312936 0.253385 0.098790 0.474637 0.1482  L2 
0.172566 0.100250 0.022634 0.261131 0.3644  L3 
0.593655 0.592876 0.348687 0.823331 0.0239  L4 
0.058327 0.030834 0.010818 0.076999 0.6342  L5 
0.178069 0.103703 0.024421 0.269454 0.3549  L6 
0.055987 0.037735 0.015791 0.076855 0.5986  L7 
0.290320 0.229458 0.075142 0.453747 0.1934  L8 
0.185745 0.126875 0.045629 0.272254 0.2670  L9 
0.206834 0.137491 0.033597 0.329708 0.3068  L10 
0.026957 0.017073 0.006245 0.037063 0.8362  L11 
0.037837 0.010746 0.002026 0.043177 0.7771  L12 
0.153215 0.091455 0.022290 0.234767 0.3802  L13 
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List of figures 
 
Figure 1.  Evolution of pattern of infection for a low-inoculum replicate.  Missing plants are 

denoted by O; sites of primary inoculum are denoted by +; infections first detected 0-4 days after 

emergence by ×; infections first detected 5-11 days after emergence by ∆; infections first 

detected 12-17 days after emergence are denoted by ◊.  Several instances of a violation of 

nearest-neighbour connectivity can be discerned. 

 

Figure 2.  Estimated posterior densities for primary infection parameter, a, for high (upper 

graph) and low (lower graph) inoculum treatments. Dashed line indicates posterior density for 

assumption of common parameters within treatments and solid lines for separate estimates for 

each replicate. 

 

Figure 3.  Estimated posterior densities for secondary  infection parameter, b0, for high- (upper 

graph) and low- (lower graph) inoculum treatments. Dashed line indicates posterior density for 

assumption of common parameters within treatments and solid lines for separate estimates for 

each replicate. 

 

Figure 4.  Estimated posterior densities for secondary infection parameter, b1, for high- (upper 

graph) and low- (lower graph) inoculum treatments. Dashed line indicates posterior density for 

assumption of common parameters within treatments and solid lines for separate estimates for 

each replicate. 

 

Figure 5.  Estimated posterior densities for secondary infection parameter, b2, for high- (upper 

graph) and low- (lower graph) inoculum treatments. Dashed line indicates posterior density for 

assumption of common parameters within treatments and solid lines for separate estimates for 

each replicate. 

 

Figure 6.  Distribution of disease progress curves (t, I(t)) as predicted by model of section 3 with 

model parameters fixed at their posterior marginal means for the joint analyses for each 

treatment.  Shaded area represents equal-tailed 95% (marginal) intervals for the predicted 
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number of infective plants I(t) at any given time. The observed values of I(t) for the 13 replicates 

for each treatment are displayed and exhibit broad consistency with the predicted intervals. 

 

 



Bayesian fitting of disease spread models 

 27 

 
 

 

 

 
 



Bayesian fitting of disease spread models 

 28 

 

0 0.1 0.2 0.3 0.4 0.5
a

0

10

20

30

40

50
de

ns
ity

 

0 0.1 0.2 0.3 0.4 0.5
a

0

10

20

30

de
ns

ity

 



Bayesian fitting of disease spread models 

 29 

0 0.1 0.2 0.3
b

0

50

100

de
ns

ity

0  

0 0.1 0.2 0.3
b

0

20

40

60

80

de
ns

ity

0  
 



Bayesian fitting of disease spread models 

 30 

0 1 2 3 4 5
b

0

1

2

3
de

ns
ity

1  

0 1 2 3 4 5
b

0

1

2

3

de
ns

ity

1  



Bayesian fitting of disease spread models 

 31 

5 10 15 20 25
b

0

0.5

1

1.5

2

de
ns

ity

2  

5 10 15 20 25
b

0

0.5

1

1.5

2

de
ns

ity

2  



Bayesian fitting of disease spread models 

 32 

7 14 21
t  (days after planting)

0

100

200

300

400

C
um

ul
at

iv
e 

nu
m

be
r 

of
 s

ym
pt

om
at

ic
 p

la
nt

s

 

7 14 21
t  (days after planting)

0

100

200

300

400

C
um

ul
at

iv
e 

nu
m

be
r 

of
 s

ym
pt

om
at

ic
 p

la
nt

s

 



Bayesian fitting of disease spread models 

 33 

Footnotes    

 

Affiliation of author 

 

1Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, 

Edinburgh, EH14 4AS, UK 

2Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge 

CB2 3EA, UK 

3Current address: Department of Infectious Disease Epidemiology, Imperial College 

London, London W2 1PG 

4Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King’s 

Buildings, Edinburgh EH9 3JZ 



Bayesian fitting of disease spread models 

 34 

Corresponding author: address for correspondence 

Professor G J Gibson, Department of Actuarial Mathematics and Statistics, Heriot-Watt 

University, Riccarton, Edinburgh EH14 4AS, UK  Fax:+44 131 451 3249; Tel: +44 131 451 

3205 

 

e-mail: gavin@ma.hw.ac.uk 



Bayesian fitting of disease spread models 

 35 

Keywords 

spatio-temporal modeling 

stochastic modeling 

fungal pathogens 

Bayesian inference 

Markov chain Monte Carlo 


