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Bayesian fitting of disease spread models

Abstract

Statistical methods are formulated for fitting atekting percolation-based, spatio-
temporal models that are generally applicable tbolical or physical processes that evolve in
spatially distributed populations. The approactiaseloped and illustrated in the context of the
spread ofRhizoctonia solani, a fungal pathogen, in radish but is readily geliwzd to other
scenarios. The particular model considered reptesprocesses of primary and secondary
infection between nearest-neighbour hosts in acéatiand time-varying susceptibility of the
hosts. Bayesian methods for fitting the model bsesvations of disease spread through space
and time in replicate populations are developelles€ use Markov chain Monte Carlo methods
to overcome the problems associated with partiakofation of the process. We also consider
how model testing can be achieved by embeddingsicks methods within the Bayesian
analysis. In particular we show how a residual pss¢ with known sampling distribution, can be
defined. Model fit is then examined by generasagples from the posterior distribution of the
residual process, to which a classical test fosisdency with the known distribution is applied,
enabling the posterior distribution of the P-valfethe test used to be estimated. For the
Rhizoctonia-radish system the methods confirm the findingseaflier non-spatial analyses
regarding the dynamics of disease transmission yaeldl new evidence of environmental

heterogeneity in the replicate experiments.
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1. Introduction

In the literature of spatio-temporal modeling thexa large body of work relating to the
broad area of percolation. This is a natural apghnofor representing biological or physical
processes that evolve through a spatially dispgosedlation when the dynamics of the process
are determined by local interactions. It has baaplied tointer alia the spread of forest fires
(Cox & Durrett, 1981), the dynamics of intereragtspecies in ecosystems (Wissel, 2000) and to
the spread of infectious diseases (Kuulasmaa, 1B8Rey et al. 2000; Ottenet al. 2004). It
seems patrticularly suitable for the systems ofysindhis paper which deal with host-pathogen

interactions in managed botanical populations itieay naturally be represented on a lattice.

Research on percolation tends to focus on what lo@sely be described as emergent
behaviour. This deals with the large-scale andj{mmm, asymptotic properties of percolation
processes, for example deriving critical valuespafameters at phase transitions between
extinction and persistence of a process. In thaysvf epidemic processes this work is important
for characterizing conditions under which a dise@asg be expected to invade a population, or

determining the level of control required to ensultenate extinction.

In order to inform studies that attempt to predicé dynamics of a system using
percolation models it is necessary to obtain siedilty valid estimates of key parameters. There
is, however, relatively little research into statizsl methodology for parameter estimation in
percolation models. A common approach when modelpatio-temporal systems is to replace a
spatially-explicit model with a non-spatial modeét is then fitted to non-spatial summaries of
the data €9. Kleczkowski et al., 1996, Gibsoret al., 1999). In the context of modeling
epidemics these summaries may typically take tien fof disease progress curves that record
numbers of infectious or symptomatic individualeo¥ime. More recently, the approach has
been extended to fit semi-spatial models (Fiigpal., 2004), which capture some of the spatial
nature of epidemic processes by representing tbkitgan of low-order correlations in spatial
pattern in addition to disease incidence. Suchagmgbhes, although convenient and useful, do
not fully exploit experimental data that are expljcspatial, such as those arising from the
intensively mapped microcosm experiments considarddis paper. A further disadvantage of
modeling only non-spatial summaries of spatial eyst is that explicit spatial data cannot

obviously be used to assess model fit. This maklearder to distinguish between competing
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models for a process, when the differences in nsoale not strongly reflected in the non-spatial

summaries.

Here we describe and test methods for parametenaggin and model assessment for
spatio-temporal models using extensive data fromranosm experiments involving the spread
of a soil-borne disease through replicated seedfiogulations. Although the methods are
applied to a specific laboratory-based system, Hreyapplicable to a wide class of natural and
semi-natural systems. Indeed, a closely relatgtoagh has been taken for fitting spatio-
temporal models to disease spread in populationgros (Gibson 1997a, 1997b; Gottwatdl.
1999). The current study is distinct from thistpaerk through its explicit treatment of times,
rather than mere order, of infections and its foonsmodels with short range interactions, a
specialisation which we exploit in the design oficént algorithms for model fitting. The
approach is fundamentally Bayesian and makes extense of modern computational methods
— in particular Markov chain Monte Carlo (MCMC) rhetls — in order to take account of the

incomplete nature of the experimental observations.

An important feature of the current study is theedepment of tests of model fit that take
account of the spatial nature of the data. Thisaal@eve by defining the notion of a stochastic
residual for each individual in a population andrtlinvestigating the joint posterior properties of
these. Since the sampling distribution of thes&dtels is known, we are able to test the model
by carrying out a classical test of conformity toist distribution, treating the posterior
distribution of a resulting P-value as a repredentaof evidence against the model fit. The idea
of considering the posterior distribution of a siaal test statistic, specifically a likelihoodiogt

has recently been examined in other contexts kirAét al. (2005).

Our aim in this paper, then, is to present thishoéblogy and illustrate its use in the
context of a particular host-pathogen syst&HiZoctonia solani Kiihn that causes damping-off
disease in a population of radish seedlings) desdrin section 2, for which a percolation
approach is believed to be valid. Section 3 prtssarspatio-temporal stochastic model for this
disease which represents the spread of symptothe ipopulation as a percolation process and
allows for dynamical changes in the rates of disdeensmission of an earlier pseudo-spatial
model (Filipeet al. 2004). Section 4 describes how the model paramess be estimated in a
Bayesian framework and gives a detailed descrippiothe MCMC algorithms used to carry

this out. In Section 5 we describe the proceggeatrating latent stochastic residuals and how
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to use them to investigate the posterior distrioutof a P-value to quantify model fit. In

section 6, we apply the techniques to spatio-tealpdata of disease progress from the
microcosm experiments and discuss the biologicaklosions that can be drawn from the
analyses. Finally, Section 7 discusses some fudihections for the work.

2. Experimental systems

As a model system we consider microcosm experimentepidemics ofR. solani
described more fully in Otteet al. (2003) and Filipet al. (2004). The data record the observed
development of damping-off disease on populatidmadish seedlingscy. Cherry Belle) caused
by R. solani, a fungus that attacks hosts in the early stafjdev@lopment, mature plants rapidly
becoming resistant to parasitism (Deacon 1980). eyTlwvere obtained for 13 replicate
microcosms with low and high levels of initial indam (giving 26 experimental units). For each
replicate, the data record daily the numbers arsitipas of diseased seedlings in a population of
414 plants arranged in an ¥823 rectangular array grown in clear plastic boxBkizoctonia
solani was added in the form of mycelial discs placed @ to randomly selected plants in
each box. For low-inoculum and high-inoculum repies, 15 discs and 45 discs were used,
respectively. Host genotype and density, waterlabiity, light and temperature were strictly
and identically controlled in each replicate. Adaiogly, differences in disease dynamics
between treatments may be assumed to reflect elféexs in primary infection arising from
different initial inoculum densities as well as degraphic variability in disease transmission
amongst replicates. The positions of damped-oftilsegs were recorded daily for 17 days after
seedling emergence. Figure 1 shows the evolutioa lofv-inoculum replicate and depicts the

locations of symptomatic plants at a subset ofélcerded times.

Filipe et al. (2004) developed a ‘semi-spatial’ stochastic mddethis process. This was
obtained by applying spatial moment-closure tealesqfrom statistical physics (pair-wise
approximation — see e.g. Filipe & Gibson (1998, PDp@o an explicitly spatio-temporal model
for the disease transmission process. Parameterthis non-spatial approximation were
estimated for each treatment by maximum-likelihddting to the incremental numbers of
infections (averaged over replicates) observedénexperiments. A potential limitation of the

analysis of Filipeet al. (2004) is that by fitting to incremental numberfs diseased plants
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averaged over replicates, within-treatment diffee=nin replicates cannot be investigated.

Furthermore, it does not make explicit use of {hetial nature of the data.

By contrast, the methods introduced in this papdly fexploit the availability of
replicated spatial data to analyse the dynamics qdercolation process. We illustrate the
application of the methods to answer epidemioldyidenportant questions. These concern the
analysis of treatment effects on transmission patars, the identification of time-varying rates
of host-to-host transmission, and the occurrenceaofbility in parameter estimates amongst
replicate epidemics within treatments. Our priopeostation is that differences in disease
dynamics between the low and high inoculum densiatments can be attributed to the
different levels of inoculunonly and not to systematic differences in transmisgiarameters
between the treatments. In considering host-to-ttaesmission, we wish to determine whether
or not the spatio-temporal analysis provides ewdesupporting the time-varying rate of
transmission, specifically a ‘rise-and-fall’, sugtgd by previous analyses (Ottenal. 2003,
Filipe et al. 2004). Finally, and most importantly we demonstridite power of the methods to
detect possible variability between replicates #émdassess the validity of the assumptions

underlying the formulation of a given model.

3. A percolation based model for disease spread

In the model the population of seedlings is represkas being located at the vertices of
a finite square lattice. The epidemic is initiated at tinte= 0, when a subset of the sites]
is inoculated with the fungus. Eaxhl X, develops symptoms due to primary infection by this
initial inoculum at a random tim& ~ Exp@) (if x is not already symptomatic due to infection
via secondary infection from one of its four nearesghbours). The random variablég { x[]
Xo} are assumed to be independent. Seedlings carbalsome symptomatic due to secondary
infection. Specifically, if a sitex develops symptoms at tinte then a neighbouring sitg
develops symptoms at+ T,y (if it has not already become symptomatic duenfeation from

another source) where

Ty ~ Exp@), 3.1
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so thatE(Ty) is a function of the time at whick became symptomatic. We assume that the
random variables |, | y is a nearest neighbour a} are independent, analogous to bond
percolation. The functio(t) reflects the formulation of Filipet al. (2004). Specifically, we

represent the biological hypothesis of a rise aalll ih the secondary infection rate by
(p(t):boexp(—bl(log((t+ 4) /02))2). Other functions could equally well be proposedhe

model used here therefore has four free paramefdnsse area, the rate of primary infection
from initial inoculum; by, which (loosely) represents the peak rate of sdagninfection;b;
which controls the range of variation in the se@gdnfection rate over time; argy which
determines the timing of the peak rate of seconafdegtion. In this paper we have changed our
time origin from that used in Filipet al. (2004) so that = 0 here corresponds to the day of
emergence of the seedlings (observed tb=hd by Otteret al. (2003)). Note, therefore, thiat
corresponds to the timing of peak rate as measundtie scale used in Filige al. (2004). The
replicates were generally observed until 17 daier @mergence so thiah, = 17.

Realisations of this stochastic model for the omdetymptoms in the lattice can be readily
simulated. Our main purpose in this paper is tothseabove model to interpret experimental
observations in terms of fundamental processeegrrdtian to analyse the stochastic dynamics of

the process. Therefore we do not present extessivglations in this paper.

4. Bayesan fitting of percolation models

Suppose that we observe the population of plantisarattice continuously from= 0 to
t = tnax and record the precise times of onset for symptiensgedlings during this period. In
this case the observations would take the form tattece of times {(x) | x O £ }, precisely
recorded for all sites displaying symptoms at same during [0O,t,] and censored for non-
symptomatic sites. We suppose that there Mrsites in the lattice of whictkk become
symptomatic before timg,, Denoting the observations pyand the model parameter vector

as@= (a, by, by, by), we formulate a parameter likelihob@@|y) as follows.
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Let Xy, ..., Xk, Xk+1, --., Xn dENOte the sites in the lattice arranged accortirte order in
which symptoms appear (wittk:1, ..., Xy representing any ordering of the unsymptomatessit

att,s). It follows thaty is observed if and only if ,

1. for each sitex;, 1 = 1, 2, ..k, then the earliest time at whighbecomes infected
from a contacting source (primary infection or poesly infected neighbour) t$x;),

2. for each site;, i = k+1, ...,N, the earliest time at whioh becomes infected from

a contacting source excedgs:.

It can be shown that the parameter likelihood caexpressed as a product of terms, one
for each site, representing the contribution to ltkelihood arising from constraints 1) or 2)
above. Thatis

Mww=iyﬁ&&dﬁﬁﬁwﬂﬂuitm@ﬂaﬁﬁkdw @4.1)

For a given site U {4, ..., X}, With m previously infected neighbours, , 1 <n <m,

and primary inoculum

L ) 0 ) =+ 3, )] e o, ) o)) -1, )
(4.2)

For i>k, if x; has m previously infected neighbours and primary inoaulthe

corresponding factor is
06 )t ) t(x,0).0) = e‘a‘(*i)ﬁexp(— dt(x,).b)e(x)-t(x;))). 4.3)

The corresponding expressions for sites withounhary inoculum are similar but omit terms

involving the parameta.

An important property of the likelihood (4.1) —3}is that the factor contributed by any
site is a function of the history of that site aidts four nearest neighbours in the lattice onlly.
is perhaps worth noting that, although the liketii@lepends on the history, the process itself is
Markovian with the next event in time determinedydny the current state of the system. This

will be particularly useful for the MCMC computati® carried out later, in that changes
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proposed to the time of onset of symptoms for ateeanly affect the calculation of at most 5
termsin (4.1).

In practice however, the exact times of onset ohfgpms are not observed, since the
population is observed at discrete tintgs.., t; say. If a site is recorded as symptomatic for the
first time at timet;, then the observations merely constrain its timéig within [tj.1, t]. We
denote these censored observationg bgnd letY”denote the set of all outcomesi.e. precise
times in (0,t)) that are consistent with the observatipghTherefore the desired likelihood

takes the form of an integral, namely

L@1y)= [L(O]y)y (4.4)
o

This integral is not in general analytically trdidga Nevertheless we can apply MCMC methods

within a Bayesian framework to solve the problem.
Parameter estimation using MCMC

This approach is now commonly used in the fittifgstochastic epidemic models to
partial observations (Gibson & Renshaw 1998, OIN&ilRoberts 1999, O’Neill & Becker
2001). It entails treating the unobserved aspettthe process as nuisance parameters and
investigating the posterior distribution of thesejly with the model parameters. Inference on

model parameters can then be made from their madrdistributions.

Let © denote the model parameter space and assignradiobution, denoteg(8), for

6. Then, given the censored observatiphshe joint posterior density o@xY ’is defined by

76,y |y) U p(fL(8).

SincelL(@]| y) can be calculated using (4.1)-(4.4), then we kmg# y | y) up to an unknown

constant of proportionality and MCMC methods areipalarly appropriate. We use a simple
algorithm that uses mainly Metropolis-Hastings upddTierney 1994). The algorithm provides
adequate performance in this context, although nsoghisticated implementations could be

carried out.

A Markov chain is defined o®x Y’ Each iteration of the chain involves proposing

moves of two types to the current state vectby): updates to the exact times of infection for
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plants becoming symptomatic in [Qs], and updates to the parametérsThese are effected as

follows.

Updates to components of y, are effected by considering each site that besoimfectious in
[0, trex] In turn. For the chosen site, a new infectiomeiis proposed uniformly from the
permissible rangetl;, tj] (wheret; denotes the observation time when the site wasdbiserved

to be infected), giving a new configuratigh The new time is accepted with probability

Infectious sites are considered in a fixed orderontrast to random scan formulations.

Updates to parameters are effected by proposing and accepting or regjgcthanges to the
current values o8, by, b; andb, in turn. A new value of the parameter is propogeiflormly
from a finite interval centred on the current pagten value, to give a new parameter ve@0r

This new vector is accepted with probability

o - min(l plo)(o° y))

plO)L(e]y)

Any proposed values of parameters that fall outhefrange of the prior are naturally rejected
since the prior density is zero at such points.e Thdths of the uniform windows for the
proposed updates to each componerl afe selected for each component, and a giverceggli
on the basis of trial runs to give favorable miximgperties for the resultant chains. Several
authors €.g. Besag et al., 1995) indicate acceptance ratelébropolis-Hastings updates in the

range 0.2 — 0.5 as leading to efficient mixing.

We also consider an alternative implementation oMarkov chain sampler for this
problem that considers a more complex state smatigat above. The second approach allows
an independent algorithm to be developed that earompared to the first in order to check the
validity of the posterior densities obtained. Hyralso have superior mixing properties when the
period between successive observations is largpecifically we extend the state space by
considering not only the precise times of the onsletsymptoms for each site becoming
symptomatic in [0, but also an arrag which denotes the source of infection for each

symptomatic site. At most there are 5 possibdif@r the source — primary infection or infection

10
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from one of the (potentially infected) four neighio®. The new likelihootl(4y, ) is similar to
that defined by (4.1) — (4.3). However the conttin from a symptomatic site (4.2) is different

in that the summatior(a’fz(ﬂ(t(x,-n),b)J is replaced by a single term corresponding to the
n=1

particular source of infection & if the infection is due to primary infection, m(t(xjn),b) if

the infection is acquired from the neighbounat.

The MCMC algorithm must also be altered for the retate space. When proposing a
new infection time for a site, infected betweent;[;, tj] the new time is now proposed uniformly
from [t;, t,] wheret; is the supremum of time of infection of the sitéectingx andt;.;, andty is
the infimum oft; and the times of infections of any sites infedtgck. This ensures that the new
time proposed will be consistent with the ‘activiekansmission pathways specified Isy
Following updating of the time of infection of desithe source is updated by selecting from the
potential sources (primary inoculum if presenteation from nearest neighbours). This can be

done via a Gibb’s step. Primary infection and dtifn from a previously infected neighbour

X.,n=1,..,m, are selected with probability proportionalaand qo(t(xjn),b) respectively.

In?
With this second formulation, it is possible, farntably chosen prior densities, to update the

primary infection parametea, via a Gibb’s step, although we do not do so is plaper.

The above methods can be applied to analyse af geplicates jointly (as we do in

section 6) simply by replacing the likelihoaéy) by the joint likelihoodL! (8] y) = [ L(8ly,)

wherey; represents the infection times for ifleeplicate, when updating componentgbf

Both formulations of the algorithm described abowe implemented using the C
programming language with the following minor machtion to the above recipe. In all
replicates a few infections that were not consistefth nearest-neighbour spread were
encountered. This can be seen from Figure 1 whatrall symptomatic plants are connected to
a primary infection via a sequence of nearest-rmgh links. Consequently the models and
algorithms above would be inapplicable due to tteéblem of vanishing likelihoods. There are
several ways to accommodate this difficulty. Th&gon we choose is to introduce a further

parameterd, (fixed to be 10) representing a primary infection rate presentedviery plant in

11
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the population. This additional source could beerpreted biologically as infection due to
inadvertent contamination and the model can explacbnnected symptomatic plants as arising
from this latter process. A8 is very small, the MCMC algorithm ‘attributes’ thinimum
number of infections to this process (usually @& tinder of 10 — 30 per replicate) in the pattern.
We appreciate that this solution to handling nonraztivity is imperfect and discuss alternative

approaches to resolving the problem in the finatisa of the paper.

5. Modd checking using stochastic residuals

A principal aim of the paper is to describe andsitate methods for assessing validity of
modeling assumptions in percolation models andapamporal models in general. We remark
that there is a well established Bayesian methgyofor model comparison (Draper, 1994).
This approach would present considerable challemygsms of implementation of the requisite
computational algorithms (that would of necessitg weversible-jump MCMC (Green, 1995)),
and the resulting model posterior probabilities kmewn to be sensitive to the choice of priors
for model parameters. This presents a particufficulty if model parameter spaces are non-
nested. Instead we proceed to construct a stboastic residuals whose sampling distribution
is known, and is independent of model parameters tllen to test the ‘reconstructed’ residuals
for consistency with this known distribution usictassical tests embedded in the Bayesian

framework.

Using the notation of Section 4, suppose that weuksite the stochastic process in the
following way. To each site /7 r we associate a random valug drawn from au(0, 1)
independently over sites. Now given the model patarsg, we obtain a realization of the
disease spread process from}{by the following algorithm, in whichX(t) denotes the set of
infected sites at time Let Yy be the random variable denoting the time at whkitdwx becomes

infected then:
i) sett=0,X(t) =01,

i) for each uninfected site, calculatey, wherer, = P(Yx > yx | 6, X(t), no other site

infected in f, yx]),

12
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iii) select the sitex with minimumyy to become the next infection and sety; for this
minimum value. Append the sixeto the infected sef(t), repeat (ii) and (iii) until all

the sites are infected.

Now it can be easily verified that givef) the above construction maps{to y by a 1-1
correspondencehg when complete infection of the population occur§Vhen theyy are
censored, due to observation terminating befoi totection, then given the censongeve can
define the selg*(y), to be all residual processas}{that would yield the censored timgsinder

the mappinde.

Now, returning to the Bayesian analysis of Sectipit follows that since the conditional
density ofr given @ andy is uniform on hg'(y), we can obtain the posterior densitr| vy’
directly from the posterior{8, y | y). Under the assumption that the observationganerated
by first drawing @ from the prior and generating the infection tinfesn the assumed model
parameterised by, the residual processis a realisation of a set ofi.d. U(O, 1) random
variables.  We consider the P-value from a stethtestP(r), to quantify evidence againspH
the {rj} arei.i.d. U(0, 1) and investigate the posterior densityP@f) giveny’ If the latter
density suggests we would rejecs With high posterior probability, then we shouldegtion the
assumed combination of prior and model as the rmsimafor generating the observations. In
carrying out this process, we omit from the claasamalysis any residuals for any sites that have

been infected via the spurious process (contrdliethe fixed parameted).

The particular test used to assess the residudtseigolmogorov-Smirnov (K-S) test
(Silvey 1970). Given a sample ofrom the posterior, we orderfrom smallest to largesfy, ...
, vy WhereN’is the number of sites in the lattice minus thio$ected by the ‘spurious’ process.

The test statistic used is
T(r) = max{ f(i) —i/N1 },

this being the modulus of the largest deviatiorwieen observed and theoretical distribution
functions. A P-value for the testd the probability of observing a test statistic asnmore

extreme thad(r)) can be calculated approximately (gag Glasbeyet al., 1986) as

P(r) = 2exp(-NT(r)?). (5.1)

13
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This approximation breaks downTifr) is small and indeed may give values exceedintyubut
it is accurate for small P-values (the frequencwhbich interests us most in detecting poor fit of

the model).
6. Results

The methods of sections 4 and 5 are applied toys@dhe data described in section 2 by
fitting the percolation model of section 3. In thealyses that follow we assume that all
parameters have independent uniform priors ovetefiregions of the positive real axis which
are selected to be wide compared with the regi@n which the posteriors are informative. This
IS an attempt to represent prior ignorance of mpdehmeters. Results for alternative choices of
vague priors for parameters are broadly similahtse presented for the uniform case.

Figures 2 — 5 show histogram estimates of the pgostmarginal densities of the model
parameters with the high and low treatments andlyssparately throughout. The particular
Markov chain used is the second of the formulationsSection 4, in which the source of
infection is represented in the components of taeessector. These graphs show the posterior
densities when the 13 replicates for a treatmentaalysed jointly (i.e. under the assumption of
common parameters across replicates) and separatgigtogram estimates of the posterior
densities for each parameter were obtained frofitéations of the chain (where each iteration
involves proposing updates to all the parametedsadinthe components @), following a burn-
in period of 1000 iterations. Although we do nbbow details here, we remark that studying the
autocorrelation of trace-plots and robustness doftgy@r inferences to starting values of
parameters and infection times suggests that thmgmix well. Moreover, posterior inferences
on parameters obtained using the first algorithecdbed in section 4, in which the infecting
source is not represented in the state spacedanéidgal to those shown here, providing further

evidence that a valid picture of the posteriorribstion has been obtained.

The posteriors for the joint analyses are veryrmigative. There is little evidence of any
difference in parameter values between treatmedaspe for the case dfy whose value for the
low-inoculum treatment appears to be smaller. Harewe note that, within treatments, the
posterior densities that arise from fitting the mbtb replicates separately vary substantially for
all four parameters. For example in the high-inaoulcase there is no value of the primary

infection rateg, estimated from a given replicate, that does pptar very extreme with respect

14
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to the posterior density for at least one othelicafe. This suggests that parameters differ

among replicates within each treatment.

To investigate the validity of the model with commparameters amongst replicates
within treatments we consider the predictive disttion of the number of infected individuals
with model parameters fixed at their posterior nreagmeans for the joint analyses. Initial
conditions (i.e. sites of primary inoculum and rmgsplants) are selected to match the
experiment with an equal number of simulations iedrrout for each compatible initial
configuration. Equal-tailed 95% intervals for ghedicted number of infective planig) at the
observation times are displayed in Fig. 6, alon¢ghwhe observed values oft) for the 13
replicates for each treatment. Based on theseuitl be suggested that the model with common
parameters broadly captures the variability in téeporal evolution ofi(t) observed over

replicates for each treatment.

In assessing model fit by comparing observed ardipted dynamics of(t) we have
ignored all the spatial information in the data. &yntrast the residual analysis of Section 5,
which does take account of spatial informationistal very different story, leading to different
inferences about parameter variation amongst @pkc Tables 1(a) and (b) give descriptive
summaries for the posterior distributions of th&K-values, as described in Section 5, when the
replicates are analysed assuming common paramettiiim treatments. For each replicate,
these summary statistics are based on a samp&@I@P-values obtained from the posterior by
calculating the K-S P-values from the vector ofdeals for each sample. From these it is clear
that for nearly all replicates, the posterior dgnsi the P-value is concentrated on low values,
suggesting that a classical observer of the rekipiucess would reject the hypothesis that it
were i.i.d. U(0, 1) for most replicates with verygih probability. For each replicate, this
probability is shown for the commonly used 5% tegtievel. On the basis of these results we
suggest that the model with common parameters mitbatments may not be valid. We remark
that the method of residual analysis is able teaéhis lack of fit when measures of fit based on
cruder summaries of the process (associated wabrgess-of-fit to the temporal data alone) may

fail.

Table 2 shows the corresponding posterior summavriesn the replicates are analysed

separately. Compared with the common-parametelysisalthe densities of P-values support

15
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higher values and rejection at the 5% level becogeeerally less likely. However, we note that
there is still evidence of a lack of fit in thaketposterior expectation of the number of replicates
for which the classical observer rejects the hypsighofi.i.d. U(0, 1) residuals at the 5% level is
high — 6.9 and 5.3 out of 13 for High and Low treants respectively. This is addressed further

in the discussion.

From the observed disparity in posterior paramdesrsities between replicates seen in
Figures 2-5 together with the improvement in measuof fit when the model is fitted to
replicates separately we conclude that there isrbgéneity among replicates for the same
treatment. From inspection of the marginal postedensities for parameters for replicates

separately, there is no evidence of systematieréifices between the two treatments.

Our spatio-temporal analyses suggest qualitativeclasions that agree with earlier
analyses of the data (Ottehal., 2003; Filipeet al., 2004). The secondary infection process
obeys a ‘rise-and-fall’ in the rate. This is shobw the support for non-zero values kiaffor
most of the replicates. Where a pronounced variasi suggested, inspection of posteriorsofor
suggests that the peak secondary rate seems raqsefitly to be located in the interval 5 to 15
days after planting (1 to 11 days after emergenicgeedlings). In replicates where little
variation in secondary infection rate appears ttakeng place (evidenced by the posteriorldor

supporting small values) little information candaned on the timing of the peak.

7. Discussion

In this paper we have presented and illustratethods for fitting spatio-temporal
stochastic models with nearest-neighbour interastito intensively mapped observations of
epidemics. In particular, the paper provides a gdmaethodology that can be adapted to allow
percolation models to be used directly in the asialgnd interpretation of observations of spatio-
temporal processes. As such it has many poteni@lcations beyond the botanical epidemics
considered here. As with earlier workg, Gibson, 1997; Gottwaldt al. 1999), the approach
uses Bayesian methods coupled with Markov chaihnigoes to explore parameter posterior
densities. Moreover we have shown how, by defirengpatial residual process with fixed
statistical properties, it is possible to assessfithof a given model by incorporating classical
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tests within the Bayesian framework. This approaximodel assessment provides a simple
alternative to Bayesian model comparison metheds Draper, 1994). The methods have been
illustrated by fitting a continuous-time, spatialodel for observed spread of damping-off
symptoms in radish infected I/ solani to data from microcosm experiments, and asses$iseng
fit of the model. The particular model fitted wlasmulated to reflect the modeling assumptions
of earlier analyses (Filipet al. 2004) but we stress at this point that all thehoé$ presented
can be readily adapted to a wide range of alteresi

With regard to the particular system considered, regults agree with earlier analyses
that suggest that there is little systematic défifee between the two treatments (high and low
levels of primary inoculum) in the experiment. Thisconsistent with biological intuition, since
there is naa priori reason why changes in the amounts of initial inmecuivould systematically
affect parameters concerned with primary and semgnttansmission in a spatially-explicit
model. Our results, however, do show that thekaigtion in transmission of infection amongst
replicates within treatments. This latter claimsigbstantiated by the wide disparity between
marginal posterior densities of the parameterstherdifferent replicates. Further evidence is
provided by the residual analysis which suggest$ ghmodel with common parameters over
replicates within a treatment fits poorly, whileetlfit improves greatly when parameters are
allowed to vary between replicates. Earlier npat&l analyses did not provide evidence of this
variability and this illustrates the power of theegent analysis which takes account of all spatial
and temporal information in the data. The presewysis also confirms the findings of earlier
work regarding the time-varying nature of the selawg infection rate for this host-pathogen
system. There is some evidence for lack-of-fitthe model from the residual analysis of
individual replicates. We do not see this as aedosconcern. The fitted model is specified by
only four free parameters and the functions withiare selected on the basis of qualitative
similarity with biological hypotheses and earlierrhulations of related non-spatial models. On
the other hand, the residual analysis takes acaufutiite totality of a very rich set of data that
includes disease history of every site in thedattilt should not be surprising that some lack of
fit is detected. Perhaps we should be surprisatlttie evidence against such a simple model

provided by such a comprehensive data set is rooiggr.

The occasional lack of connectivity in the disepagterns invalidates the strict nearest-

neighbour assumption made in our basic model. hig paper we overcame this in ad hoc
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way, by extending the model to allow for non-neamesighbour secondary or unexpected
primary infections at a small, fixed rate. Altetimaly, we could have retained the nearest-
neighbour infection process by extending the madehclude an additional state in which a
plant is infective but not yet symptomatic with hgwnfected plants staying in this state for a
random time until emergence of symptoms. This rhaaot contradicted by an unconnected
pattern of symptomatic sites since the underlyiatjgon of infected sites may nevertheless be
connected. Ongoing investigations with this modgjgest that it has some merits. However, it
may explain the observations poorly when ‘spuriangctions are observed at large distances
from other infections. In the latter case, a langenber of intervening asymptomatic sites must
be imputed in order to ensure connectivity of thiedted sets. Moreover, the introduction of an
unobservable asymptomatic state leads to sengit¥posterior inferences to the choice of prior
parameter density, not encountered for the simpledel. A second approach to coping with
occasional lack of connectivity would be to alloanger range interactions in the disease
transmission process as in Gibson (1997a,b), a#tpense of the computational convenience of

working with the nearest-neighbour model.

There are several avenues for future researchnigddom the present work. Clearly
there is potential for extending the range of ajgtions to other spatio-temporal processes most
notably for ecological interactions involving contipg species, as well as for other
epidemiological models. Within the current systeéhe methods can be used in combination
with further experimentation, to quantify effect§ chemical and biological control or of
different soil types on variability in transmissiatynamics amongst replicate epidemics. It is
also being used to analyse the spread of diseasegtih mixtures of host species that differ in
susceptibility ¢f. Ottenet al. 2005, for a description of the biological proce¥s€sirrent work is
also directed towards extending the percolatiogligm to incorporate more biological realism,
in particular to allow for interference and syneagypongst infected individuals that challenge a

common susceptible individual on a lattice.
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Table 1. Estimated mean, and quartiles for posterior distiim of P-values for a K-S test of the
residuals when common parameters within treatmargsassumed. These are estimated from
20,000 independent samples from the posterioriloigion of the vector of residuals for each
replicate.

a) High inoculum

nmean medi an LQ uQ Pr (p<5% rep
0. 013454 0. 008933 0. 003938 0. 017715 0. 9706 H1
0. 000024 0. 000006 0. 000002 0. 000020 1. 0000 H2
0. 000048 0. 000015 0. 000005 0. 000046 1. 0000 H3
0. 002916 0. 002039 0. 001029 0. 003757 1. 0000 H4
0. 136859 0.121301 0. 070754 0. 189353 0. 1508 H5
0. 075692 0. 061481 0. 033481 0.101138 0. 4054 H6
0. 014030 0. 010434 0. 005457 0.018893 0.9794 H7
0. 000000 0. 000000 0. 000000 0. 000000 1. 0000 H3
0. 000024 0. 000009 0. 000003 0. 000026 1. 0000 H9
0. 552893 0. 540598 0. 388507 0. 707525 0. 0014 H10
0. 000002 0. 000000 0. 000000 0. 000002 0.9844 H11
0. 000000 0. 000000 0. 000000 0. 000000 1. 0000 H12
0. 086550 0. 067288 0. 035668 0.116220 0. 3708 H13
b) Low inoculum
mean medi an LQ uQ Pr (p<5% rep
0. 085966 0. 063765 0. 030051 0.118423 0. 4036 L1
0. 016515 0.011087 0. 004239 0. 022995 0.9412 L2
0. 025164 0. 018007 0. 008519 0. 034758 0. 8724 L3
0. 001911 0. 001254 0. 000602 0. 002506 1. 0000 L4
0. 000126 0. 000034 0. 000009 0. 000116 1. 0000 L5
0. 067819 0. 052805 0. 024010 0. 097047 0. 4804 L6
0. 000045 0. 000017 0. 000005 0. 000048 1. 0000 L7
0. 000004 0. 000000 0. 000000 0. 000001 1. 0000 L8
0. 000030 0. 000006 0. 000001 0. 000022 1. 0000 L9
0. 003341 0. 001897 0. 000737 0. 004192 0. 9998 L10
0. 000001 0. 000000 0. 000000 0. 000001 1. 0000 L11
0. 001243 0. 000678 0. 000257 0. 001549 1. 0000 L12
0. 051377 0. 027275 0. 008475 0. 069362 0. 6560 L13
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Table 2. Estimated mean, and quartiles for posterior distiiim of P-values for a K-S test of the
residuals when the model is fitted to each repdicsparately. These are estimated from 20,000
independent samples from the posterior distributibthhe vector of residuals for each replicate.

a) Highinoculum

mean medi an LQ uQ pr{p<5% rep
0. 052114 0.011119 0. 001752 0. 051376 0. 7465 H1
0. 206157 0. 094937 0. 023089 0. 300549 0.3769 H2
0. 281590 0.161915 0. 047275 0. 425640 0. 2693 H3
0. 031162 0. 005034 0. 000706 0. 027090 0. 8288 H4
0. 213550 0.103440 0. 022493 0. 321352 0.3712 H5
0. 382658 0. 305408 0. 099617 0. 619855 0.1671 H6
0. 412586 0.381779 0.178334 0. 610587 0. 0828 H7
0. 056309 0.014313 0. 002553 0. 063408 0.7116 H8
0. 040092 0. 008516 0. 001360 0. 040168 0.7842 H9
0. 254628 0.173918 0. 045907 0. 408351 0. 2633 H10
0.170810 0. 064701 0.014189 0. 225905 0. 4547 H11
0. 020977 0. 002134 0. 000247 0. 013154 0. 8952 H12
0. 007638 0. 000434 0. 000042 0. 003514 0.9619 H13
b) Low inoculum
mean medi an LQ uQ pr{p<5% rep
0.118601 0. 073594 0. 024119 0.171492 0. 3992 L1
0. 312936 0. 253385 0. 098790 0. 474637 0.1482 L2
0. 172566 0.100250 0. 022634 0.261131 0. 3644 L3
0. 593655 0.592876 0. 348687 0. 823331 0. 0239 L4
0. 058327 0. 030834 0.010818 0. 076999 0. 6342 L5
0.178069 0.103703 0. 024421 0. 269454 0. 3549 L6
0. 055987 0. 037735 0. 015791 0. 076855 0. 5986 L7
0. 290320 0. 229458 0. 075142 0. 453747 0.1934 L8
0. 185745 0.126875 0. 045629 0. 272254 0. 2670 L9
0. 206834 0.137491 0. 033597 0. 329708 0. 3068 L10
0. 026957 0.017073 0. 006245 0. 037063 0. 8362 L11
0. 037837 0. 010746 0. 002026 0. 043177 0.7771 L12
0. 153215 0. 091455 0. 022290 0. 234767 0. 3802 L13
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List of figures

Figure 1. Evolution of pattern of infection for a low-inocuh replicate. Missing plants are
denoted byo; sites of primary inoculum are denoted byinfections first detected 0-4 days after
emergence byx; infections first detected 5-11 days after emecgebyl; infections first

detected 12-17 days after emergence are denotedd b$everal instances of a violation of

nearest-neighbour connectivity can be discerned.

Figure 2. Estimated posterior densities for primary infegtiparameter, a, for high (upper
graph) and low (lower graph) inoculum treatmentasiied line indicates posterior density for
assumption of common parameters within treatmemtssalid lines for separate estimates for

each replicate.

Figure 3. Estimated posterior densities for secondary tidacparameterhy, for high- (upper
graph) and low- (lower graph) inoculum treatmeltashed line indicates posterior density for
assumption of common parameters within treatments salid lines for separate estimates for
each replicate.

Figure 4. Estimated posterior densities for secondary tidacparameterb,, for high- (upper
graph) and low- (lower graph) inoculum treatmeitashed line indicates posterior density for
assumption of common parameters within treatmentssalid lines for separate estimates for

each replicate.

Figure 5. Estimated posterior densities for secondary trdacparameterb,, for high- (upper
graph) and low- (lower graph) inoculum treatmeitashed line indicates posterior density for
assumption of common parameters within treatmemtssalid lines for separate estimates for

each replicate.
Figure 6. Distribution of disease progress curves (t, §§)predicted by model of section 3 with

model parameters fixed at their posterior margimsans for the joint analyses for each

treatment. Shaded area represents equal-tailed @&&fginal) intervals for the predicted
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number of infective plantgt) at any given time. The observed value$(fffor the 13 replicates

for each treatment are displayed and exhibit bomagistency with the predicted intervals.
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