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Abstract

We give a justification of the discrete analogue of Laplace’s method applied to the
asymptotic estimation of sums consisting of positive terms. The case considered is the
series related to the hypergeometric function pFq−1(x) (with q ≥ p + 1) as x → +∞

discussed by Stokes [Proc. Camb. Phil. Soc. 6 (1889) 362–366 ]. Two examples are given
in which it is shown how higher order terms in the asymptotic expansion may be derived
by this procedure.
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1. Introduction

Laplace’s approximation is one of the most fundamental asymptotic techniques for the estima-
tion of integrals containing a large parameter or variable. For integrals of the form

I(x) =

∫ b

a

f(t)exψ(t)dt (x→ +∞),

where f(t) and ψ(t) are real continuous functions defined on the interval [a, b] (which may be
infinite), the dominant contribution as x→ +∞ arises from a neighbourhood of the point where
ψ(t) attains its maximum value. When ψ(t) possesses a single maximum at the point t0 ∈ (a, b),
so that ψ′(t0) = 0, ψ′′(t0) < 0 and f(t0) 6= 0, then I(x) has the asymptotic behaviour

I(x) ∼ f(t0)e
xψ(t0)

( −2π

xψ′′(t0)

)1/2

(x→ +∞);

see, for example, [4, p. 39] or [16, p. 57].
The same principle may also be applied to the sum of a series of positive terms, in which

the terms steadily increase up to a certain point and then steadily decrease. The asymptotic
behaviour of the sum of the series can then be obtained by a discrete analogue of Laplace’s
method by consideration of the order of magnitude of the greatest term in the series. In 1889,
Stokes [12] published a short paper in which he applied this principle to obtain the leading
asymptotic behaviour of the hypergeometric-type series

F (x) =

∞
∑

n=0

∏p
r=1 Γ(n+ ar)

∏q
r=1 Γ(n+ br)

xn (q ≥ p+ 1, |x| <∞), (1.1)

where p ≥ 0, q ≥ 1 are integers, ar (1 ≤ r ≤ p) and br (1 ≤ r ≤ q) are positive parameters
and x > 0. The function F (x) covers many cases of important special functions in physical
applications and, when bq = 1 say, is proportional to the generalised hypergeometric function

pFq−1(x) with numeratorial parameters ar (1 ≤ r ≤ p) and denominatorial parameters br
(1 ≤ r ≤ q − 1). Stokes argued that the dominant contribution to F (x) as x → ∞ arose from
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the terms in the series situated in the neighbourhood of the greatest term. By approximation
of these terms in the form of a Gaussian exponential followed by replacement of the sum by an
integral with limits extended to ±∞, Stokes showed in a non-rigorous fashion that

F (x) ∼ (2π)(1−κ)/2κ−1/2x(ϑ+ 1
2
)/κ exp (κx1/κ) (x→ +∞), (1.2)

where

κ = q − p, ϑ =

p
∑

r=1

ar −
q
∑

r=1

br + 1
2κ. (1.3)

This result appears to be the earliest attempt at the determination of the asymptotic behaviour
of a series of the form (1.1). An application of this principle that the large-argument behaviour
of a series is controlled by the magnitude of the greatest term was made by Hardy [5] in the
determination of the zeros of a class of integral functions.

Relatively little use appears to have been made of the discrete analogue of Laplace’s method,
presumably on account of its being confined to series of positive terms and the heuristic nature
of its arguments. Examples can be found in [14, p. 8] and in the book by Bender & Orszag [2,
p. 304], where they derive the leading asymptotic behaviour of the sum

∞
∑

n=0

xn

(n!)α
(α > 0) (1.4)

as x → +∞. In the case of integer α, this latter function is a particular case of F (x) in (1.1)
with p = 0, q = α. The same example has been discussed in Olver’s book [8, p. 307] but using
a different approach based on an integral representation of the sum together with Laplace’s
approximation for integrals.1 A recent proof of a discrete analogue of Laplace’s method applied
to sums of the form

∑n
k=0 fn(k)q

gn(k) as n → +∞, where fn(k) and gn(k) are functions
defined on nonnegative integers and 0 < q < 1, has been given in [13]. These authors applied
their results to derive asymptotic formulas for the q−1-Hermite, the Stieltjes-Wigert and the
q-Laguerre polynomials.

In this paper, we present a justification of Stokes’ arguments for the discrete analogue of
Laplace’s method applied to the function F (x) in (1.1). Although other more general methods
are available for the asymptotics of F (x) when x is a large complex variable, namely the classi-
cal Laplace method applied to an integral representation of the sum in (1.1) or the asymptotic
theory of hypergeometric-type functions developed in [3, 17], our aim here is to put Stokes’
arguments on a more rigorous foundation. We shall restrict our attention to the case of pos-
itive parameters and variable x considered by Stokes, although it may be possible to extend
the arguments to cover the case of complex x by using the ideas given in [6] applied to the
determination of the relation of the maximum modulus of an integral function to its maximum
term. In addition, we shall show how higher order terms in the expansion of F (x) as x→ +∞
can also be derived.

The results obtained are then used to give expansions for two functions. The first example
is the sum defined in (1.4) and the second example comes from a problem in combinatorics
expressed in the form of an integral of a product of Hermite polynomials over (−∞,∞).

2. Preliminary lemmas

We first state and prove two lemmas that will be required in the asymptotic discussion of F (x).
In the course of our analysis it is necessary to introduce the positive parameter ǫ < 1 that will
be chosen to scale with the asymptotic variable x given by

ǫ ∼ x−ν , 1
3 < ν < 1

2 (x→ +∞). (2.1)

1Olver’s analysis is restricted to the case 0 < α ≤ 4.
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Lemma 1 Let a = κ/(2x), 0 ≤ δ < 1 and µ ∼ ǫx, where κ is defined in (1.3), x > 0 and ǫ is
specified in (2.1). Then for nonnegative integer r, we have

S± ≡
∞
∑

k=µ+1

(k ± δ)re−a(k±δ)
2

= O(xr+νe−aµ
2

) (r = 0, 1, 2, . . .) (2.2)

as x→ ∞ (a→ 0+).

Proof Consider first the sum

S+ =
∞
∑

k=µ+1

(k + δ)re−a(k+δ)
2

<
∞
∑

k=µ

(k + 1)re−ak
2

(2.3)

for a > 0 and 0 ≤ δ < 1. Then

∞
∑

k=µ

(k + 1)re−ak
2

< e−aµ
2

(µ+ 1)r
∞
∑

k=0

(

µ+ k + 1

µ+ 1

)r

e−2kaµ

< e−aµ
2

(µ+ 1)r
{

1 +

∞
∑

k=1

(2k)re−2kaµ

}

.

The sum in braces can be expressed as (−)rΥr(aµ), where the function Υr(z) is defined by

Υr(z) :=

∞
∑

k=1

(−2k)re−2kz =

(

d

dz

)r

(1 − e−2z)−1.

Routine calculations show that Υr(z) = O(z−r−1) as z → 0+ and, since aµ ∼ 1
2κx

−ν , it then
follows that

S+ = O((ǫx)rx(r+1)νe−aµ
2

) = O(xr+νe−aµ
2

). (2.4)

With aµ2 = 1
2κǫ

2x ∼ 1
2κx

1−2ν , the exponential factor in this estimate is therefore seen to be
exponentially small as x→ ∞ provided ν < 1

2 .
In a similar manner, we obtain for the second sum

S− =

∞
∑

k=µ+1

(k − δ)re−a(k−δ)
2

<

∞
∑

k=µ+1

kre−a(k−1)2 =

∞
∑

k=µ

(k + 1)re−ak
2

.

From (2.3) and (2.4), it follows that S− is also O(xr+νe−aµ
2

) as x→ ∞. 2

Lemma 2 Let a > 0, 0 ≤ δ < 1 and r be a nonnegative integer. Then, upon neglecting
exponentially small terms, we have

∞
∑

k=−∞

(k + δ)2re−a(k+δ)
2 ∼

√

π

a
a−r

Γ(r + 1
2 )

Γ(1
2 )

(2.5)

and
∞
∑

k=−∞

(k + δ)2r+1e−a(k+δ)
2 ∼ 0 (2.6)

as a→ 0.

Proof By the Poisson-Jacobi transformation [15, p. 124] we have for a > 0 and 0 ≤ δ < 1

S(a, δ) :=
∞
∑

k=−∞

e−a(k+δ)
2

=

√

π

a
+ Ψ(a, δ), Ψ(a, δ) := 2

√

π

a

∞
∑

n=1

e−π
2n2/a cos(2πnδ).
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As a → 0+, the function Ψ(a, δ) and its partial derivatives with respect to a and δ are all

exponentially small controlled by e−π
2/a.

Then we have

∂rS

∂ar
= (−)r

∞
∑

k=−∞

(k + δ)2re−a(k+δ)
2

= (−)r
√

π

a
a−r

Γ(r + 1
2 )

Γ(1
2 )

+
∂rΨ

∂ar
.

Since ∂rΨ/∂ar is exponentially small for r = 1, 2, . . . as a→ 0+, the result in (2.5) follows.
To deal with the sum in (2.6), we first note that

∂S

∂δ
= −2a

∞
∑

k=−∞

(k + δ)e−a(k+δ)
2

=
∂Ψ

∂δ
,

so that
∂r+1S

∂ar∂δ
= (−)r+12a

∞
∑

k=−∞

(k + δ)2r+1e−a(k+δ)
2

=
∂r+1Ψ

∂ar∂δ
.

As all partial derivatives of Ψ(a, δ) are exponentially small in the limit a → 0+, the result in
(2.6) follows. 2

3. The dominant contribution to F (x)

For convenience in presentation we replace the variable x in (1.1) by xκ and consider the
function

F (x) =

∞
∑

n=0

un, un :=

∏p
r=1 Γ(n+ ar)

∏q
r=1 Γ(n+ br)

xκn, (3.1)

where κ = q − p ≥ 1, ar (1 ≤ r ≤ p) and br (1 ≤ r ≤ q) are positive parameters and x > 0.
The maximum term in this series can be obtained by examination of the ratio of the (n+ 1)th
term to the nth term to obtain

un+1

un
=

∏p
r=1(n+ ar)

∏q
r=1(n+ br)

xκ =
(x

n

)κ
∏p
r=1(1 + ar/n)

∏q
r=1(1 + br/n)

.

It then follows that the greatest term in the series corresponds to n ≃ x; for large x, the terms
un increase monotonically until n ≃ x and thereafter decrease monotonically with increasing n.

We let N = ⌈x⌉, x = ⌈x⌉ − δ, with 0 ≤ δ < 1, and with ǫ as specified in (2.1) define the
integers n± by

n+ = ⌈(1 + ǫ)N⌉, n− = ⌊(1 − ǫ)N⌋.
Then we can write

F (x) =

n+
∑

n=n−

un +
∑

n<n−

un +
∑

n>n+

un. (3.2)

The dominant contribution to F (x) as x→ ∞ arises from the terms with n−≤ n ≤ n+, where
the series is sharply peaked near n = N , and will have a value controlled by the maximum
term uN . The contributions from the tails n < n− and n > n+ are then exponentially small
compared to uN , as we now demonstrate.

We have
1

uN

∑

n<n−

un <
1

uN

∑

n≤n−

un <
un−

uN
(1 + n−) (3.3)

due to the monotonic nature of un for n ≤ n−, and

1

uN

∑

n>n+

un <
un+

uN

∞
∑

s=0

us+n+

un+

=
un+

uN

∞
∑

s=0

∏p
r=1(n++ ar)s

∏q
r=1(n++ br)s

xκs

=
un+

uN
p+1Fq

(

1, n++ a1, . . . , n++ ap
n++ b1, . . . , n++ bq

∣

∣

∣

∣

xκ
)

, (3.4)
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where (a)s = Γ(a+ s)/Γ(a) is Pochhammer’s symbol and p+1Fq denotes the generalised hyper-
geometric function with p+ 1 numeratorial parameters and q denominatorial parameters.

Since n+ ∼ (1 + ǫ)x, the above hypergeometric function is ‘balanced’ in the sense that the
sth term in its series expansion as x→ ∞ is O(1) and approximated by n−κs

+ xκs ∼ (1 + ǫ)−κs.
By the confluence principle [7, §3.5], we then find that

p+1Fq

(

1, n++ a1, . . . , n++ ap
n++ b1, . . . , n++ bq

∣

∣

∣

∣

xκ
)

∼
∞
∑

s=0

(1 + ǫ)−κs =
1

1 − (1 + ǫ)−κ
= O(xν) (3.5)

as x→ ∞. With n± ∼ (1 ± ǫ)x, N ∼ x, Stirling’s formula shows that

Γ(n±+ α)

Γ(N + α)
∼ eN−n±

(n±+ α)n±+α− 1
2

(N + α)N+α− 1
2

= O(e∓ǫxxn±−N (1 ± ǫ)n±)

for large x and finite α. Then

un±

uN
= xκ(n±−N)O(e±κǫxxκ(N−n±)(1 ± ǫ)−κn±) = O(e−κxΛ±(ǫ)),

where
Λ±(u) := (1 ± u) log(1 ± u) ∓ u.

It is easily shown, when 0 < u < 1, that Λ+(u) > 1
2u

2(1 − u) and Λ−(u) > 1
2u

2. Hence the
ratios un±

/uN = O(exp(−κx1−2ν)), which are exponentially small as x → ∞ since ν < 1
2 . It

then follows from the bounds in (3.3), (3.4) and (3.5) that the tails of the series compared to
the maximum term uN are also exponentially small as x→ ∞. The dominant contributuion to
F (x) therefore arises from the first sum in (3.2) taken over n−≤ n ≤ n+.

4. Derivation of the expansion for F (x)

From Section 3, the function F (x) can be written as

F (x) ∼
n+
∑

n=n−

un =

µ
∑

k=−µ

uk+N

=

µ
∑

k=−µ

∏p
r=1 Γ(σ + ar)

∏q
r=1 Γ(σ + br)

xκσ, σ ≡ σ(k) = x+ k + δ, (4.1)

to within an exponentially small error as x → ∞, where we have used N = x+ δ and the fact
that2 n± −N = ±µ, with µ = ⌈ǫN⌉. The terms in the sum (4.1) can now be approximated for
large x by means of the well-known Stirling expansion for Γ(z) given by

Γ(z) ∼
√

2π zz−
1
2 e−z

∞
∑

s=0

(−)sγsz
−s (z → +∞), (4.2)

where the first few Stirling coefficients γs have the values γ0 = 1, γ1 = − 1
12 , γ2 = 1

288 ,
γ3 = 139

51840 . Then after some routine algebra we obtain

Γ(z + a) ∼
√

2π zz+a−
1
2 e−z

(

1 +
B1(a)

z
+
B2(a)

z2
+ · · ·

)

(4.3)

as z → +∞, where

B1(a) = 1
2a(a− 1) + 1

12 , B2(a) = 5
12a

2(1 − a) + 1
8a(a

3 − 1) + 1
288 , . . . .

2For integer N and x > 0, we have ⌈N + x⌉ = N + ⌈x⌉ and ⌊N − x⌋ = N − ⌈x⌉.
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4.1. Expansion of un for n ≃ N

Use of the expansion (4.3) then shows that for σ → ∞

∏p
r=1 Γ(σ + ar)

∏q
r=1 Γ(σ + br)

∼ (2π)−κ/2σ−κσ+ϑeκσ

∏p
r=1

(

1 + B1(ar)
σ + B2(ar)

σ2 + · · ·
)

∏q
r=1

(

1 + B1(br)
σ + B2(br)

σ2 + · · ·
)

= (2π)−κ/2σ−κσ+ϑeκσ
∞
∑

s=0

Dsσ
−s,

where the parameters κ, ϑ are defined in (1.3) and the first few coefficients Ds are given by

D0 = 1, D1 =

p
∑

r=1

B1(ar) −
q
∑

r=1

B1(br),

D2 =

p
∑

r=1

B1(ar) −
q
∑

r=1

B2(br) +

p−1
∑

r=1

p
∑

j=r+1

B1(ar)B1(aj) −
q−1
∑

r=1

q
∑

j=r+1

B1(br)B1(bj)

+

( q
∑

r=1

B1(br)

)2

−
p
∑

r=1

B1(ar)

q
∑

r=1

B1(br), . . . . (4.4)

Now put σ = x(1 + u), where u = (k + δ)/x and define the variable

τk =
k + δ

x1/2
(−µ ≤ k ≤ µ). (4.5)

Then we find
∏p
r=1 Γ(σ + ar)

∏q
r=1 Γ(σ + br)

xκσ ∼ (2π)−κ/2xϑeκσ(1 + u)ϑ−κσ
∞
∑

s=0

Ds

xs
(1 + u)−s,

where
eκσ(1 + u)−κσ = eκx(1+u){1−log (1+u)} = eκx−

1
2
κτ2

k eκT ,

T =
τ3
k

6x1/2
− τ4

k

12x
+

τ5
k

20x3/2
− τ6

k

30x2
+ · · · .

For |k| ≤ µ, we have

|τ±µ|s+3

x(s+1)/2
= O(x1−(s+3)ν) (s = 0, 1, 2, . . . )

and |u| = O(x−ν ). Since ν > 1
3 , it follows that each term appearing in T (with |k| ≤ µ) is

o(x−sν ) as x→ ∞ and so, upon application of the binomial theorem, we obtain

eκT
∞
∑

s=0

Ds

xs
(1 + u)ϑ−s =

∞
∑

s=0

Ps(τk)

xs/2
,

where
P0(τk) = 1, P1(τk) = ϑτk + 1

6κτ
3
k .

The Ps(τk) are polynomials in τk of degree 3s and consist of even (resp. odd) powers of τk
according as s is even (resp. odd), and have the form

Ps(τk) =

⌊3s/2⌋
∑

r=0

β(s)
r τ2r+ω

k , (4.6)
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where ω = 0 or 1 according as s is even or odd, respectively. For s = 2, 3 and 4, the coefficients

β
(s)
r are given by

β
(2)
0 = D1, β

(2)
1 = 1

2ϑ(ϑ− 1), β
(2)
2 = 1

6κ(ϑ− 1
2 ), β

(2)
3 = 1

72κ
2, (4.7)

β
(3)
0 = D1(ϑ− 1), β

(3)
1 = 1

6{ϑ(ϑ− 1)(ϑ− 2) + κD1}, β
(3)
2 = 1

60κ(3 − 10ϑ+ 5ϑ2),

β
(3)
3 = 1

72κ
2(ϑ− 1), β

(3)
4 = 1

1296κ
3,

and

β
(4)
0 = D2, β

(4)
1 = 1

2D1(ϑ− 1)(ϑ− 2), β
(4)
2 = 1

24{ϑ(ϑ− 1)(ϑ− 2)(ϑ− 3) + 2κD1(2ϑ− 3)},

β
(4)
3 = 1

360κ(2ϑ− 3)(4 − 15ϑ+ 5ϑ2) + 1
72κ

2D1, β
(4)
4 = 1

1440κ
2(17 − 30ϑ+ 10ϑ2),

β
(4)
5 = 1

2592κ
3(2ϑ− 3), β

(4)
6 = 1

31104κ
4. (4.8)

The expansion of the summand in (4.1) in the neighbourhood of the greatest term n = N
then finally becomes

∏p
r=1 Γ(σ + ar)

∏q
r=1 Γ(σ + br)

xκσ ∼ (2π)−κ/2xϑeκx−
1
2
κτ2

k

∞
∑

s=0

Ps(τk)

xs/2
, (x→ ∞) (4.9)

for |k| ≤ µ, where τk is defined in (4.5), µ ∼ ǫx and ǫ is specified in (2.1).

4.2. The asymptotic evaluation of the dominant sum

From (4.1) and (4.9), the dominant contribution to F (x) can accordingly be expressed in
the form

F (x) ∼ (2π)−κ/2xϑeκx
µ
∑

k=−µ

e−
1
2
κτ2

k

(

1 +
P1(τk)

x1/2
+
P2(τk)

x
+ · · ·

)

. (4.10)

Now
∞
∑

k=µ+1

τrke
− 1

2
κτ2

k = x−r/2S+,

−∞
∑

k=−µ−1

τrk e
− 1

2
κτ2

k = x−r/2S−

for nonnegative integer r, where S± are defined in (2.2). Then application of Lemma 1 shows

that both these sums are O(xr/2+νe−aµ
2

) as x→ ∞. Consequently, since aµ2 = 1
2κǫ

2x ∼ x1−2ν

with ν < 1
2 , the limits of summation in (4.10) can be extended to ±∞, with the introduction of

additional exponentially small errors as x→ ∞ resulting from each power τrk present in Ps(τk).
Thus we find

F (x) ∼ (2π)−κ/2xϑeκx
∞
∑

k=−∞

e−
1
2
κτ2

k

{

1 +
P1(τk)

x1/2
+
P2(τk)

x
+ · · ·

}

. (4.11)

The terms in (4.11) can be evaluated by Lemma 2. From (2.5) with a = κ/(2x), we have
upon neglecting exponentially small terms

∞
∑

k=−∞

τ2r
k e−

1
2
κτ2

k ∼
(

2πx

κ

)1/2

(1
2κ)

−r Γ(r + 1
2 )

Γ(1
2 )

(r = 0, 1, 2, . . .) (4.12)
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as x → ∞, with the analogous sum involving odd powers of τk being exponentially small by
(2.6). Then, from (4.6), it follows that

∞
∑

k=−∞

e−
1
2
κτ2

kP2s(τk) =

3s
∑

r=0

β(2s)
r

∞
∑

k=−∞

τ2r
k e−

1
2
κτ2

k

∼
(

2πx

κ

)1/2 3s
∑

r=0

β(2s)
r (1

2κ)
−r Γ(r + 1

2 )

Γ(1
2 )

as x → ∞, neglecting exponentially small terms. The contribution to the sum from the odd
coefficients P2s+1(τk) in (4.11) is exponentially small in the limit x→ ∞.

If we now define the coefficients cs by

cs = κs
3s
∑

r=0

β(2s)
r (1

2κ)
−r Γ(r + 1

2 )

Γ(1
2 )

, (4.13)

the expansion for F (x) finally takes the form

F (x) ∼ (2π)(1−κ)/2κ−1/2xϑ+ 1
2 eκx

∞
∑

s=0

cs
(κx)s

(x→ ∞), (4.14)

where c0 = 1. The next coefficient c1 can be evaluated by noting, from (4.4), that

D1 =
1

2

p
∑

r=1

ar(ar − 1) − 1

2

q
∑

r=1

br(br − 1) − κ

12

to find

c1 = κD1 + 1
2ϑ(ϑ− 1) + 1

2 (ϑ− 1
2 ) + 5

24

= 1
2κ

{

p
∑

r=1

ar(ar − 1) −
q
∑

r=1

br(br − 1) +
ϑ2

κ

}

− κ2

12
− 1

24
. (4.15)

The coefficient c1 agrees with that given in [9, Appendix A] when due account is taken of
the different definition of F (x). The expression for the coefficient c2 is not stated due to
its complexity but can be obtained from (4.8), (4.13) and evaluation of D2 in (4.4). Higher
coefficients can be derived with the aid of Mathematica when dealing with specific cases, as is
carried out in Section 5. When the variable x is replaced by x1/κ, the leading form of (4.14)
agrees with Stokes’ result given in (1.2). This concludes the justification of the discrete analogue
of Laplace’s method applied to the sum in (3.1).

A more detailed analysis of F (x) [17, 3] (see also [11, §2.3]) shows that the exponential
expansion in (4.14) holds for complex values of x in a sector enclosing the positive real axis.
When κ > 2, additional subdominant exponential expansions appear in the asymptotics of
F (x). In addition, when p 6= 0, there is a subdominant algebraic expansion present, which
undergoes a Stokes phenomenon on the positive real x-axis.

5. Examples

We conclude this paper by giving two examples of the discrete analogue of Laplace’s method
applied to sums where higher order terms in the expansion are obtained.

Example 1. Our first example is the function defined in (1.4), which we rewrite in the form

ψ(x) =

∞
∑

n=0

xαn

(n!)α
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For positive integer α, this function is a particular case of F (x) in (3.1) corresponding to p = 0,
q = α with br = 1 (1 ≤ r ≤ q), for which the parameters in (1.3) have the values κ = α and
ϑ = − 1

2α. It is easily verified that the maximum term in the series corresponds to n ≃ x.
Then, with N = ⌈x⌉, x = ⌈x⌉ − δ, 0 ≤ δ < 1, σ = x + k + δ and τk as defined in (4.5), we

have from (4.9)

xασ

(σ!)α
∼ eαx−

1
2
ατ2

k

(2πx)α/2

∞
∑

s=0

Ps(τk)

xs/2
(5.1)

for x → ∞ and |k| ≤ µ. From (4.4), we find D1 = −α/12 and D2 = α2/288, which may then

be substituted into the coefficients β
(s)
r in (4.7) and (4.8) to yield the coefficients cs (s ≤ 2) in

(4.13) and (4.15). Then from (4.14), we obtain the expansion

ψ(x) ∼ α−1/2eαx

(2πx)(α−1)/2

∞
∑

s=0

cs
(αx)s

(x→ ∞), (5.2)

where

c0 = 1, c1 = 1
24 (α2 − 1), c2 = 1

1152 (α4 + 22α2 − 23).

Continuation of the expansion process in (4.9) and (4.10) with the aid of Mathematica yields
the additional coefficients

c3 = 1
414720 (5α6 − 303α4 + 11535α2 − 11237),

c4 = 1
39813120 (5α8 − 1892α6 − 239154α4 + 2723452α2 − 2482411), . . . .

We observe that when α = 1, we have ψ(x) = ex and the coefficients cs with s ≥ 1 correctly
vanish. Although the analysis in Section 4 applies only to integer values of α, it can be shown
that (5.1) holds for arbitrary finite α > 0. Consequently, the expansion for ψ(x) in (5.2) holds
for α > 0.

Example 2. The second example concerns the behaviour of the integral

Im =

∫ ∞

−∞

e−x
2

H4
m(x) dx (m → ∞),

where Hm(x) denotes the Hermite polynomial of order m. This integral arose in a combinatoric
problem studied in [1]. These authors derived an asymptotic estimate by expressing Im as
an integral involving a Legendre function taken round a contour surrounding the origin in
the complex plane, and from this constructed a generating function to which they applied
Darboux’s method. The asymptotics of Im as m → ∞ were then deduced from the bahaviour
of the generating function at its singularities on its circle of convergence.

Here, we shall obtain an asymptotic expansion for Im by means of the discrete analogue of
Laplace’s method. It is shown in [1, 10] that

Im = 22m(m!)4
m
∑

n=0

22nΓ(n+ 1
2 )

(n!)3((m− n)!)2
. (5.3)

This sum consists of positive terms which are easily shown to possess a maximum for large m
at n ≃ 2

3m. For arbitrary 0 < ǫ < 1
2 and N = ⌈ 2

3m⌉, we then have

Sm :=

m
∑

n=0

22nΓ(n+ 1
2 )

(n!)3((m− n)!)2
∼

[(1+ǫ)N ]
∑

n=[(1−ǫ)N ]

22nΓ(n+ 1
2 )

(n!)3((m− n)!)2
(5.4)

with an error that is subdominant with respect to every power of 1/m as m → ∞ (we omit
these details).
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From (4.2) and (4.3) with the parameter a = 1
2 , we find for n→ ∞

22nΓ(n+ 1
2 )

(n!)3
∼ 22nn−2ne2n

2πn3/2

(

1 − 7

24n
+

49

1152n2
+ · · ·

)

.

We now let ν ≡ 2
3m = ⌈ν⌉ − δ, where3 0 ≤ δ < 1, and define the variables

n = ν + t, t = k + δ, u = t/ν, τk = (k + δ)/ν1/2,

where |t| is small compared with ν. Since m− n = 1
2ν − t = 1

2ν(1 − 2u), we have from (4.2)

(m− n)! ∼
√

2π(1
2ν − t)

1
2
ν−t+ 1

2 e−
1
2
ν+t

∞
∑

s=0

(−)s2sγs
νs(1 − 2u)s

for large ν. Some routine but laborious algebra then shows that the terms in the second sum
in (5.4) in the neighbourhood of the maximum term can be expanded as

22nΓ(n+ 1
2 )

(n!)3((m− n)!)2
∼ 3

4π2m

(

3

2m

)3/2
(m

3

)−2m

e2m−3νu2

× (1 + u)−3/2

1 − 2u

exp [3νu2 − 2ν(1 + u) log(1 + u)]

exp [ν(1 − 2u) log(1 − 2u)]
G(u, ν),

where

G(u, ν) =

(

1 − 7(1+u)−1

24ν + 49(1+u)−2

1152ν2 + · · ·
)

(

1 + (1−2u)−1

6ν + (1−2u)−2

72ν2 + · · ·
)2 .

This finally produces the expansion for m→ ∞ in the form

22nΓ(n+ 1
2 )

(n!)3((m− n)!)2
∼ 3

4π2m

(

3

2m

)3/2
(m

3

)−2m

e2m−3τ2
k

∞
∑

s=0

Ps(τk)

νs/2
, (5.5)

where, omitting the odd-order coefficients,

P0(τk) = 1, P2(τk) = − 5
8 + 23

8 τ
2
k − 2τ4

k + 1
2τ

6
k ,

P4(τk) = 25
128 − 231

64 τ
2
k + 1435

128 τ
4
k − 891

80 τ
6
k + 77

16τ
8
k − 5

6τ
10
k + 1

24τ
12
k , . . . .

We now extend the range of summation in (5.4) to ±∞ (with the introduction of exponen-
tially small errors by Lemma 1) to obtain

Sm ∼ 3e2m

4π2m

(

3

2m

)3/2
(m

3

)−2m ∞
∑

k=−∞

e−3τ2
k

(

1 +
P1(τk)

ν1/2
+
P2(τk)

ν
+ · · ·

)

.

The sums appearing in this last expression may be evaluated by Lemma 2. We have from (2.5)

∞
∑

k=−∞

τ2r
k e−3τ2

k =

∞
∑

k=−∞

(k + δ)2r

νr
e−3(k+δ)2/ν ∼ (2πm)1/2 3−r−1 Γ(r + 1

2 )

Γ(1
2 )

as ν → ∞, from which we may derive the expansion

Sm ∼ 3e2m

4π2m

(

3

2m

)3/2
(m

3

)−2m ∞
∑

s=0

bsm
−s,

3The value of δ = 0, 1

3
or 2

3
according to the value of m.
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where b0 = 1, b1 = − 5
12 , b2 = 17

144 . Continuation of the expansion process in (5.5) with the help
of Mathematica then produces the coefficients

b3 = 287
12960 , b4 = 1301

62208 , b5 = 1371821
26127360 , . . . .

From (5.3), we then obtain

Im ∼ 3

4m

√

3

π
62m(m!)2

(

∞
∑

s=0

bsm
−s

)(

∞
∑

s=0

(−)sγsm
−s

)2

,

where we have replaced a factor of (m!)2 with the help of (4.2). This finally yields the expansion4

Im ∼ 3

4m

√

3

π
62m(m!)2

∞
∑

s=0

csm
−s (m→ ∞), (5.6)

where

c0 = 1, c1 = − 1
4 , c2 = 1

16 , c3 = 1
32 ,

c4 = 7
256 , c5 = 59

1024 , . . . .

The first three terms of this expansion were obtained in [1], where the third coefficient was
incorrectly given as c2 = 3

16 . To demonstrate the validity of this expansion we present in Table
1 the absolute relative error in the computation of Im in (5.3) by means of (5.6) for different
values of m and truncation index s.

s m = 50 m = 100 m = 200

0 5.000× 10−3 2.500 × 10−3 1.250× 10−3

1 2.538× 10−5 6.297 × 10−6 1.568× 10−6

2 2.558× 10−7 3.161 × 10−8 3.928× 10−9

3 4.592× 10−9 2.801 × 10−10 1.729× 10−11

4 1.956× 10−10 5.931 × 10−12 1.827× 10−13

5 1.026× 10−11 1.552 × 10−13 2.387× 10−15

Table 1: Values of the absolute relative error in the computation of Im by the asymptotic expansion (5.6) for
different values of m and truncation index s.

6. Concluding remarks

In Sections 3 and 4 we gave a justification of the use of the discrete analogue of Laplace’s
method applied to the series of positive terms F (x) in (1.1). The evaluation of the dominant
contribution to F (x), which results from the terms in the series near the greatest term, was
carried out by means of the Poisson-Jacobi transformation, thereby avoiding the complications
inherent in expressing the sum as an integral with limits extended to ±∞, as employed by
Stokes [12] and in [2, p. 304].

We remark that the same procedure can be applied to the more general function, known as
the Wright function, defined by

pΨq(x) =

∞
∑

n=0

∏p
r=1 Γ(αrn+ ar)

∏q
r=1 Γ(βrn+ br)

xn

n!
, (5.1)

4An obvious misprint in [1, Eq. (58)] has the factor (m!)2 in the denominator.
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where p, q are nonnegative integers and the parameters αr, βr, ar and br are (here) real and
positive. Similar arguments then lead to the exponential expansion

pΨq(x) ∼ A0X
ϑeX

∞
∑

s=0

csX
−s, X = κ(hx)1/κ

as x→ +∞, where

κ = 1 +

q
∑

r=1

βr −
p
∑

r=1

αr, h =

p
∏

r=1

ααr

r

q
∏

r=1

β−βr

r , ϑ =

p
∑

r=1

ar −
q
∑

r=1

br + 1
2 (q − p),

A0 = (2π)
1
2
(p−q)κ−

1
2
−ϑ

p
∏

r=1

α
ar−

1
2

r

q
∏

r=1

β
1
2
−br

r .

The first two coefficients cs are given by

c0 = 1, c1 = 1
2κ(A + 1

6B),

where

A =

p
∑

r=1

ar(ar − 1)

αr
−

q
∑

r=1

br(br − 1)

βr
− ϑ

κ
(ϑ− 1), B =

p
∑

r=1

α−1
r −

q
∑

r=1

β−1
r + κ−1 − 1,

as found in [9, Appendix A] by a different argument. It is seen that when αr = βr = 1, the
coefficient c1 agrees with that in (4.15) when due account is made for the additional factor n!
in the denominator of (5.1).
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