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Abstract 9 

Farm monitoring and operations generate heterogeneous AGRI-data from a variety of different 10 

sources that have the potential to be delivered to users ‘on the go’ and in the field to inform farm 11 

decision making. A software framework capable of interfacing with existing web mapping services to 12 

deliver in-field farm data on commodity mobile hardware was developed and tested. This raised key 13 

research challenges related to: robustness of data steaming methods under typical farm connectivity 14 

scenarios, and mapping and 3D rendering of AGRI-data in an engaging and intuitive way. The 15 

presentation of AGRI-data in a 3D and interactive context was explored using different visualistaion 16 

techniques; currently the 2D presentation of AGRI- data is the dominant practice, despite the fact that 17 

mobile devices can now support sophisticated 3D graphics via programmable pipelines. The testing 18 

found that WebSockets were the most reliable streaming method for high resolution image/texture 19 

data. From our focus groups there was no single visualisation technique that was preferred 20 

demonstrating that a range of methods is a good way to satisfy a large user base. Improved 3D 21 

experience on mobile phones is set to revolutionize the multimedia market and a key challenge is 22 

identifying useful 3D visualization methods and navigation tools that support the exploration of data 23 

driven 3D interactive visualisation frameworks for AGRI-data.  24 
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1. Introduction 41 

Delivering secure and sustainable provision of food, water and energy, particularly in 42 

the face of climate change and reduced carbon targets is a huge challenge. Precision 43 

Agriculture (PA) and sustainable intensification has been advocated as a scalable solution to 44 

modern global food security challenges by saving time, energy, water and money (Karetsos 45 

and Sideridis, 2014; Whitacre and Griffin, 2014; Santana et al., 2007). PA stemmed from the 46 

desire to manage farms more sustainably. Traditionally PA has been restricted to those that 47 

can afford the latest technology, but maturation and ubiquity of enabling digital and mobile 48 

technologies are set to transform PA (Whitacre and Griffin, 2014; Karetsos and Sideridis, 49 

2014; Butler 2006). This is supported by various UK, USA and EU strategies for encouraging 50 

innovation in agriculture (e.g. UK Agri-Tech Strategy (HM Government, 2013) and 51 

associated AGRIMETRICS (Tiffin, 2017) and EUs FIWARE (López-Riquelme et al., 2016) 52 

accelerators) supporting a revolution in the use of data science from “farm to fork”.  53 

Precision Agriculture (PA) is tightly coupled to the Internet of Things (IoT) and converting 54 

big data, originating from heterogeneous sources, into information is a key challenge (Mulla, 55 

2013; Zhang et al., 2002). There is however a growing need for “on the go” decision-making 56 

tools for in-field viewing of relevant farm data  (Ying, 2012; Chittaro, 2006; Pombinho et al., 57 

2007). Mobile technology that interfaces with existing farm servers could deliver data that 58 

offers early warnings of potential issues in the field e.g. assessing the risks of disease and pest 59 

outbreaks or poor crop performance. The authors see such a mobile tool as complimenting 60 

the rich landscape of Farm Management Information System (FMIS) presented by Fountas et 61 

al., (2015) and illustrated in Fig 1. However, to progress there are two technical challenges 62 

that need to be addressed:  63 

• Streaming data efficiently from a farm server to a commodity mobile device 64 



• Implementing and evaluating different interactive 2D and 3D visualisation methods 65 

for the display of AGRI data on a mobile device 66 

Previous mobile applications (apps) have been developed for farmers and agronomists, but 67 

these apps are focused on specific needs (e.g. soil nutrient approximation), and utilise 2D 68 

visualisation methods (Hopkins, 2013). Mobile devices (tablets and/or smart phones) are now 69 

ubiquitous with more memory, faster processors and feature a programmable Graphic 70 

Processing Unit (GPU) (Shebanow, 2013). GPUs can be programmed via special programs 71 

called shaders, which permit sophisticated mobile graphics once reserved for video games 72 

and PC-based visual simulations (Akenine-Möller et al., 2008; Falconer et al., 2015).  Mobile 73 

graphics hardware is designed to work with texture data efficiently. The benefits of using 74 

high resolution aerial photography (Lange, 2001) and interactive 3D landscapes (Lovett et al., 75 

2015) for enhancing user engagement has been highlighted. Additionally mobile GPS 76 

hardware can be exploited to ensure relevant data is delivered to users by linking GPS to the 77 

Field of View (FoV) (Burigat and Chittaro, 2015; Tsiropoulos & Fountas 2015). 78 

Recently (PIX 4D, 2016; Puri, 2016) released software to construct 3D textured Digital 79 

Elevation Models (DEM) of FARM DATA, captured using unmanned aerial drone, or using 80 

sensors. There is a growing recognition in the AGRI sector that 3D visualisation is a useful 81 

tool as exemplified by Gepiel et al., (2015), where a PC-based 3D visualization of in-field 82 

sensor data is created. Areview of ICT-AGRI ERA-NET EU funded projects for 2010 to 83 

2015 features few utilising 3D content with the exception of VAROS (Jordan 2015). Further, 84 

there  is a paucity of mobile applications for PA with interactive 3D visualisation and this is 85 

primarily a consequence of two issues. Firstly, the skills set associated with 3D graphics does 86 

not intersect with the traditional AGRI sector. Secondly, the real benefits of mobile 3D 87 

content have yet to be discovered in this sector. At the time of writing, the authors were not 88 



able to find a specific example of a 3D visualization specifically for crop yield analysis on a 89 

mobile platform. 90 

A software framework for streaming and rendering data in 3D, with potential applications to 91 

crop scouting, is presented based on mobile game technology. The software framework 92 

combines virtual texturing and streamed farm data to inform ‘on the go’ decision making. 93 

The technology is demonstrated using crop yield data and high resolution aerial photography 94 

although it can in principle display other AGRI data. The proposed AGRI-AG mobile app, 95 

enabled only by the multidisciplinary convergence of game technology with AGRI data, has 96 

the potential to transform in-field crop monitoring and inform early decision-making by 97 

growers to improve efficiency/profitability of the farming industry, providing healthier, more 98 

affordable food for the future.  99 

2. Software Development 100 

2.1 Application  101 

The Model Viewer Controller (MVC) is a common and well documented software design 102 

pattern (Vlissides et al., 1994) and this methodology guided the development of the app.. The 103 

MVC pattern is widely used and suitable for applications that require user input via a 104 

graphical user interface (GUI). The MVC pattern is also the default and recommended 105 

software design pattern for developing Android applications (Phillips and Hardy, 2013). 106 

Insert Figure 1 here 107 

Figure 1 illustrates how the AGRI-AG app can integrate into the existing FMIS landscape, 108 

which is reviewed in Fountas et al., (2015), to support crop monitoring illustrated here by 109 

delivering yield maps.  110 

Insert Figure 2 here 111 



Fig. 2 shows the components of the AGRI-AG application, implemented as an Android 112 

mobile app and highlighting the data streaming, processing and rendering stages.  113 

AGRI-AG user input is facilitated through the mobile app’s user interface as well as GPS 114 

functionality. Users can navigate the 3D scene using gestures for zooming, rotating and 115 

panning the 3D scene. The GPS coordinates are used to centre the users view in the 3D scene, 116 

which acts as a virtual camera so that users can freely navigate the scene. The different 117 

methods for AGRI-data presentation is by the toggling of radio buttons.  118 

The 3D scene comprise a textured Digital Elevation Model (DEM) and different methods to 119 

present yield data (in 2D and 3D). Two streaming methods delivering large textures e.g. high 120 

resolution aerial photography from UAV, but this could also be satellite infrared imagery for 121 

assessing crop health, are investigated. Although the desire is to integrate the mobile 122 

technology with existing farm servers, for this research the test data (spatio-temporal yield 123 

data and high resolution imagery) was stored on a remote server located at the university, as 124 

the PA company is a live business operation. 125 

 2.2 Data Format Specifications 126 

The main data types that AGRI-AG deals with are image (textures) and text files. The image 127 

files are used to generate the 3D geometry for the Digital Elevation Model, as well to provide 128 

texture overlays for the yield data and aerial photography. The image data files are JPG 129 

image files which are faster to decode on the mobile tablet hardware and have reasonable 130 

compression (Thiagarajan, 2012). The text files store yield data values that are parsed and 131 

used to generate representative 3D primitives. The text used to store the sampled yield data is 132 

stored as a standard CSV (Comma Separated Value) text file. The streamed data from the 133 

server is encoded as Base64 string data files. This is a convenient format that encodes the 134 

data to a Base64 hexadecimal ASCII file encoding. This format is used because it requires 135 



less calls to be made to the server and the required data is packaged and sent as a single 136 

Base64 data file form the server to the client, using either long-polling HTTP or WebSockets-137 

based client/server communication model (Popov, 2009). Presently the yield maps used for 138 

the visualisation by AGRI-AG are not generated in real time. Instead they were generated 139 

offline using yield mapping software, GS+ (Gammadesign Software, 2016). Generating yield 140 

maps require the use of Kriging algorithms, which are compute intensive, but could be a 141 

prime candidate for parallelisation on mobile devices in the future. The CSV file is used i) as 142 

input into a Block Kriging algorithm to generate the interpolated yield map images 143 

mimicking what would be done on the farm server. These images are then exported, along 144 

with a standard colour table used by GS+, as JPEG image files, and transferred to the test 145 

server which can be downloaded by the app as needed. Figure 3 below illustrates the process 146 

of acquiring the yield data which is then presented in various forms as described below. 147 

 148 

Insert Figure 3 149 

2.3 The 3D Rendering Pipeline and Data Visualisation 150 

The AGRI-AG app features various 2D and 3D visualisation methods based either on 151 

textures or 3D primitives, that represent the wider agricultural context and crop yield data. 152 

Since visualisation methods can be prohibitively expensive to compute on the CPU, the GPU 153 

is used to offload the required processing from the CPU. The visualisation methods used for 154 

AGRI-AG are implemented in a shader written in GLSL (OpenGL Shading Language, a C-155 

like programming language for shaders (Munshi, 2008)) as part of the 3D graphics 156 

programmable pipeline. Vertex shader code is used to define how the GPU will handle the 157 

vertex data associated with the 3D objects (Brothaler, 2013). The vertex shader computes the 158 

vertex position, vertex normal and the texture coordinates of a 3D object being rendered. This 159 

data is streamed to the fragment shader which computes the final pixel colour based on the 160 

object colour, texture (image data) and shading model used. Basic Gouraud shading is 161 



implemented on a per-vertex basis, and is used to combine the texture, scene lighting and 3D 162 

object colour (Gouraud, 1971).  163 

2.3.1 Texture-based Landscape Visualisation 164 

The 3D Digital Elevation Model (DEM) that captures the topography of the landscape is 165 

represented using an image (Mach and Patschek, 2007). This image can either be taken by a 166 

UAV or obtained via third party sources (such as Ordnance Survey UK). Increasingly this 167 

type of image data is large in terms of resolution and must be resized and resampled before 168 

use on mobile devices. Using standard graphics programming approaches 2D textures, also 169 

represented as an image, can be mapped onto the 3D DEM. These 2D textures can be either 170 

high resolution aerial photography, capturing features of the landscape, or colour-mapped 171 

yield data derived from block Kriging algorithms. To increase rendering speeds, the image 172 

data (both DEM and imagery) is discretized into uniform regions of smaller tiles (Fig 4). The 173 

AGRI-AG texture management component selects appropriate resolution tiles using Level of 174 

Detail (LOD) methods. The tile selected is based on the distance between the viewer 175 

(camera) and the land tile as illustrated in Fig. 5. Methods for streaming and downloading the 176 

tiles are presented in section 2.4. 177 

Insert Figure 4 & 5 178 

2.3.2 3D Yield Map Visualisation 179 

A 3D yield surface can be used to convey the heterogeneity in crop yield by both colour 180 

and/or height. The yield data is used to extrude the pixels based on the crop yield value. This 181 

generates a 3D surface where low and high heights correspond to low and high yields 182 

respectively. Fig. 6 shows the 2D and 3D yield maps for comparison. The shading model uses 183 

a lookup table of pseudo-normals to increase the rendering speeds during visualisation. This 184 

was implemented primarily as an optimization method for running the app on lower-end 185 

mobile tablets, as GPU does not need to compute the vertex normal directions every frame. 186 



Insert Figure 6  187 

2.3.3 3D Spatially Averaged (Aggregated) Data Visualisation  188 

One way to visualise large amounts of quantitative spatial data is using spatial averaging 189 

methods (Spence, 2001). The number of yield data points to average are specified and the 190 

appropriate block/area size is then calculated. The data is assumed to be homogeneously 191 

distributed, which is a fair assumption for this type of data. At the centre of each block a 3D 192 

cuboid is generated, the height of which is scaled by the calculated averaged yield value. 193 

Other geometrical primitives can be used such as cones, spheres or cylinders. The aggregated 194 

data is read as raw data from a Coma Separated Value (CSV) data file, which can be 195 

downloaded from the server, and includes the yield, latitude and longitude values. The fewer 196 

points per bock will result in more 3D object primitives to be displayed (Fig 7). The 197 

aggregated 3D visualisation method also uses “pseudo-normal” calculations for surface 198 

shading. Therefore, all 3D objects have the same facing vertex normals thus they are all lit 199 

and shaded in one direction.  200 

Insert Figure 7 201 

2.4 Texture Streaming Methods  202 

Methods implemented in AGRI-AG for streaming high resolution data from the farm server 203 

include HTTP and WebSockets (Andersson and Göransson, 2012). HTTP is a default 204 

standard for data transfer between web connected applications on mobile devices, and 205 

WebSockets are currently becoming more widely used and are an already adopted standard 206 

(Grigorik 2013). HTTP based streaming makes use of "long polling" HTTP method where a 207 

connection to the server is established and the client requests data. After a set time-out 208 

period, the connection is closed and the client has to connect to the server again. 209 

Alternatively, WebSockets allow for a constant connection to be maintained between the 210 



client and server. WebSockets make use of bi-directional communication between the client 211 

and the server, and the connection is kept constantly open. Data transmission is considered to 212 

be low-bandwidth as the data packets are transmitted via the WebSockets protocol run on top 213 

of a single TCP connection (Grigorik, 2013). Fig. 8 illustrate how the HTTP long-polling and 214 

WebSockets communication works between the client and server 215 

Insert Figure 8  216 

2.5 AGRI-AP Performance Evaluation  217 

2.5.1 Benchmarking of app and data visualisation techniques 218 

As the aim was to ensure interactivity of the app two key performance indicators were 219 

measured for the different visualisation methods: Frames per Second (FPS) and the 220 

Milliseconds per Frame (MPFS). The RAM and CPU usage were also monitored. The mobile 221 

tablets used for testing were the Asus Google Nexus 7 and HTC Google Nexus 9 tablets. 222 

These tablet models were chosen because they provide a good range for comparison across 223 

the hardware capability spectrum. The Asus Google Nexus 7 tablet is an older generation 224 

Android mobile tablet with support for version 4.3 of the Android operating system (called 225 

“Jelly Bean”). It features a 1.51 GHz quad-core Krait 300 CPU, 2 GB DDR3L RAM and a 226 

Qualcomm 400 MHz quad-core Adreno 320 GPU. The HTC Google Nexus 9 tablet is a more 227 

powerful Android tablet featuring support for Android 5.0.1 (called “Lollipop”). The Nexus 9 228 

features a NVIDIA Tegra K1 CPU (2.3 GHz dual-core 64-bit “Denver”), 2 GB LPDDR3-229 

1600 RAM and a NVIDIA Kepler GPU. The most significant difference between the two 230 

Nexus 7 and 9 tablets is the support for 3G/4G mobile networking supported only by the 231 

Nexus 9. All of the profiling was done using the ADT debug tools within the Eclipse 232 

integrated development environment (IDE). 233 

 234 



2.5.2 Data Streaming  235 

Two use cases were selected for evaluating the streaming methods: high connectivity (via 236 

Wi-Fi) and low connectivity (via 3G). Testing the steaming in these two environments 237 

reflected the conditions in which the app would be used. The chosen high-connectivity 238 

environment was the Abertay University campus and the streaming methods were tested 239 

using a standard Wi-Fi network connection. The chosen low-connectivity environment was 240 

Tentsmuir Forest in Fife, Scotland (see Fig. 9).  241 

 242 

Insert Figure 9 243 

 244 

The HTC Google Nexus 9 was used as the main tablet for the low and high-connectivity 245 

environment testing. The Google Nexus 9 tablet was used as it features support for 3G/4G 246 

mobile communication, which is essential for testing in the field. The streaming testing 247 

protocol included downloading a single large 2048x2048 compressed JPEG image tile for a 248 

given DEM tile region and recording the time to download.  249 

 250 

2.5.3 User evaluation  251 

A focus group was set up to determine the user perceptions of the different visualisation 252 

techniques. The focus group was recruited to reflect the potential user base and included 253 

digital and non-digital natives. The focus group involved downloading the app on the user’s 254 

own devices and trialling the functionality and visualisation methods. The qualitative testing 255 

focussed on usability, visual preference and overall impact – which participants worked 256 

through at their own pace. There were eight participants in the user testing group, which 257 



included farmers, agronomists, PA technologists and academics. The questionnaire is 258 

presented in App 1. 259 

 260 

3. Results  261 

3.1 Data Visualisation techniques 262 

Fig. 10 shows the results of the visualisation techniques implemented to display the yield data 263 

for a given field. The 2D colour coded map Fig. 10 a) is the most familiar style to farmers 264 

and agronomists.  265 

Insert Figure 10 266 

 267 

Fig. 11 shows an “exploded view” of time series yield data for the same field. This 268 

emphasises the customisability of visualisation of AGRI data afforded by the programmable 269 

pipeline on mobile devices. Alternative methods of animating time series data is shown in 270 

Fig. 12. 271 

Insert Figure 11 272 

 273 

Insert Figure 12 274 

 275 

3.2 Performance Results  276 

Fig. 13 - 16 show the average FPS, MFPS, RAM usage and CPU usage results for each of the 277 

visualisation methods tested on the Nexus 7 and 9 tablet devices. Higher FPS values indicate 278 

better rendering performance, while smaller MFPS value indicate higher rendering efficiency 279 

(less time spent) rendering each frame. Lower CPU and RAM usage values are preferred. 280 

Each of the performance tests were replicated 15 times to obtain a distribution. The data is 281 



not norammaly distributed therefore error bars are not presented on the charts. For the 282 

aggregated data visualisation methods, the point sample size of 10, 30 and 50 was chosen for 283 

the benchmarking which results in 1546, 537, 338 3D primitives to render. RAM usage is far 284 

lower on the Nexus 9 than on the Nexus 7 due to the use of the new runtime ART VM, which 285 

has more optimizations than the previous VM version Delvik which is used by the Nexus 7. 286 

Interactive performance on the Nexus 9 is slightly worse than on the Nexus 7. This is because 287 

the application was developed originally for version 4.3 of the Android operating system 288 

running on the Nexus 7 tablet. Nexus 9 uses version 5 of the Android operating system 289 

(called “Lollipop”) and also uses a completely re-designed version of the runtime virtual 290 

machine (VM) called ART (Toombs, 2013). The code was not ported nor optimized 291 

specifically to make use of any of the new features of version 5 of the Android operating 292 

system. 293 

 294 

Insert Figure 13 295 

Insert Figure 14 296 

Insert Figure 15 297 

Insert Figure 16 298 

 299 

3.3 Texture Streaming Results 300 

The time taken to download the 2048x2048 compressed JPEG texture image using HTTP and Web 301 

Sockets in a high and low connectivity environment is presented in Fig. 17. The connectivity 302 

results show that in a high connectivity environment, the use of WebSockets for streaming on 303 

the Nexus 9 tablet is significantly faster in comparison to HTTP-based streaming (see Fig. 304 

17). Testing in a low-connectivity environment was performed using only the Nexus 9 tablet 305 

as it features support for 3G communication. The results obtained from the low-connectivity 306 



environment show that the usage of WebSockets-based streaming is faster than HTTP-based 307 

streaming. The performance variances found in the WebSockets-based streaming method 308 

using the 3G network connection protocol are due to non-standardized support for 309 

WebSockets over the 3G communication network. This has been researched and reported by 310 

(Estep, 2013), and his research concludes that WebSockets performance can vary 311 

significantly depending on the network communication protocol that is being used.  312 

 313 

Insert Figure 17 314 

 315 

3.4 Qualitative User Testing Results 316 

The app was tested by exploring and monitoring crop yields of a single field over time and 317 

with different presentation modes. A summary of the testing together with some statements 318 

from users is presented The user interface was described as having a clean layout and 319 

graphical style but there was however some issues with the navigation being non intuitive. 320 

The users requested both gesture based navigation and a navigation wheel such as in Google 321 

maps. With regard to visual preference the users found that the use of aerial photography 322 

overlaid on top of a 3D digital elevation model was beneficial for contextualising the main 323 

features (e.g. farm fields, buildings, lochs). It was also noted that the texture resolution 324 

should be higher and more crisp when the user zooms in. Most users rated the two 325 

interpolated crop yield data time series renders with the highest preference. A suggestion was 326 

made to include an "exploded view" of the yield data for the different years, as well as the 327 

ability to playback and through time series using a video-like playback interface. These 328 

features have been added for the final release version of the app as shown in Fig. 11 and 12. 329 

The overall impact section revealed that users were generally satisfied with the app, but 330 



improvements could be made by incorporating other data such as chemistry (PH, nutrient), 331 

soil values / soil texture, rainfall per week. One test participant wrote on the feedback form: 332 

“Both methods (top down and 3D view) of the land area are useful. What I like most is that 333 

the 3D terrain model could show field terrain better than 2D (map).” Some users found the 334 

3D spatially averaged visualisation method to be particularly engaging, especially when 335 

compared to the 2D yield maps. Another participant stated that what they liked most about 336 

the app was “rapid visualisation of yield data”, but that they disliked the “3D view of 337 

aggregated data”. The ability to animate through time series data was also positively 338 

received. The users found it useful to switch between the visualisation methods seamlessly 339 

and in real-time. One tester stated in the feedback that “The tilted top-down view is easier to 340 

see and to control but that a top-down view is also useful in certain scenarios. (App) doesn’t 341 

seem to have noticeable performance hits (when viewing terrain) and greatly aids the user in 342 

determining where they are looking”. Reservations were made about the lack of gesture based 343 

scene navigation, the method for zooming in and out of the scene (as this was tied to button 344 

controls rather than gesture based controls). One tester commented that “Buttons have 345 

confusing terminology (names) and that vertical axis rotation is opposite to what I expect.”, 346 

and another mentioned that “A reset button for navigation should be added along with 347 

gesture based control” and that “pinch (zoom) function would be nice”. The navigation 348 

control issues were addressed and changed to complete gesture based control after the 349 

feedback was provided.  350 

 351 

4. Discussion  352 

The research findings have shown that high-resolution aerial photography and crop yield data 353 

can be streamed from a remote server and displayed in an interactive context on mobile 354 

devices. It is shown in both low and high connectivity environments that WebSockets are 355 



significantly faster than using HTTP-based streaming. WebSockets make use of bi-356 

directional communication between the client and the server. The connection between the 357 

server and the client is kept alive throughout the communication period. Therefore data can 358 

be transmitted between the client and the server simultaneously without opening and closing 359 

the connection. This makes the WebSockets communication protocol comparable to low-360 

latency network data transfer and has increased the protocols popularity for use in 361 

applications that require low-latency real-time communication (Grigorik, 2013). 362 

Further the application performance results show that the implemented visualisation methods 363 

can be rendered in real-time. The issues highlighted by Chen et al 2015 with respect to data 364 

analysis and presentation being a bottleneck in PA can to some degree be overcome with the 365 

presented framework. The varying preferences with respect to visualisation techniques 366 

further support that a suitable way forward is providing the users with a selection of methods 367 

to choose from. It is suspected that those that are used to 3D visualisation and considered 368 

digital natives may find the 3D methods more intuitive whilst others do not. The flexible 369 

customisation of data presentation, achieved by programmable pipelines, is useful for a large 370 

user base where new ‘effects’ can be tried out. 371 

 Improved 3D experience on mobile phones is set to revolutionize the multimedia market and 372 

a key challenge is identifying useful 3D visualization methods and navigation tools that 373 

support the exploration of data driven 3D interactive visualisation frameworks.  374 

5. Conclusion 375 

The developed AGRI-AG application demonstrates that mobile devices are capable of 376 

streaming and displaying 3D maps of farm AGRI data, in novel ways on commodity mobile 377 

devices, within an interactive 3D context. This may benefit stakeholders in terms of enhanced 378 

engagement and delivery of context-aware and relevant data. Different data visualisation 379 

techniques have been described, implemented and assessed for presenting farm data and the 380 



wider geographical context. The power consumption and the effect AGRI-AG has on the 381 

mobile device battery life was not determined. Extensive in-field testing of the application to 382 

specific agricultural tasks is also part of future work. The AGRI-AG application can be 383 

improved by having better integration with web database services for accessing aerial 384 

imagery and geospatial data in real-time as well as for uploading data to a farm server. The 385 

core platform can be applied to many other spatial data-rich sectors including environmental 386 

monitoring and homeland security. 387 
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Figure Captions  513 

 514 

Figure 1: Example integration of the AGRI-AG app, and related app inputs, into an existing 515 

FMIS.  Adapted from Fountas et al 2015. 516 

Figure 2:  Flowchart diagram illustrating the key components of the AGRI-AG framework. 517 

 518 

Figure 3: The yield map generation process using offline pre-processing. The offline 519 

generation of yield maps is done using GS+ software, where the generated yield map along 520 

with the colour table are exported as image files to be used in the main AGRI-AG interactive 521 

visualisation scenario. The yield map image data can be used for both 2D and 3D projections 522 

for visualisation purposes of stakeholder engagement.  523 

 524 



Figure 4: Example of the LOD tile selection for AP imagery used in AGRI-AG. 525 

 526 

Figure 5: Correspondence between a) the location of the selected farmland area, b) tiled 527 

aerial photography image data and c) the tiled digital elevation model. 528 

 529 

Figure 6: Visual differences between the 3D (left) and 2D (right) yield map visualisation 530 

methods.  531 

 532 

Figure 7: The spatially averaged algorithm using 1 point per block shown within the 3D 533 

context and showing Lat Long coords in top left. The GUI layout is also shown. 534 

 535 

Figure 8: Illustration showing communication between client device and server using a) 536 

HTTP Long-Polling based and b) WebSockets-based connectivity methods. 537 

 538 

Figure 9: Pictures from the low-connectivity testing site in Tenstmuir Forest, Fife, Scotland.  539 

 540 

Figure 10: Examples of the three data visualisation techniques, a) 2D map b) 3D map and  c) 541 

aggregated 3D visualisation 542 

 543 

Figure 11: Examples exploded display of yield time series data.  544 

 545 

Figure 12: Frames of a time animation of the yield data  546 



 547 

Figure 13:  Average FPS performance result.  548 

 549 

Figure 14: Average MFSP performance result.  550 

 551 

Figure 15: Average RAM usage performance result. 552 

 553 

Figure 16: Average CPU usage performance result.  554 

Figure 17: High and low-connectivity environment testing results on the Nexus 9 tablet. The 555 

milliseconds correspond to the elapsed image texture download time.  556 


