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Abstract

Farm monitoring and operations generate heterogesn&GRI-data from a variety of different
sources that have the potential to be deliveregéns ‘on the go’ and in the field to inform farm
decision making. A software framework capable ¢drfacing with existing web mapping services to
deliver in-field farm data on commodity mobile haate was developed and tested. This raised key
research challenges related to: robustness ofstizdaning methods under typical farm connectivity
scenarios, and mapping and 3D rendering of AGRa-@atin engaging and intuitive way. The
presentation of AGRI-data in a 3D and interactigatext was explored using different visualistaion
techniques; currently the 2D presentation of AGRita is the dominant practice, despite the fadt tha
mobile devices can now support sophisticated 3[ptges via programmable pipelines. The testing
found that WebSockets were the most reliable stiamethod for high resolution image/texture
data. From our focus groups there was no singlelifation technique that was preferred
demonstrating that a range of methods is a goodtavagtisfy a large user base. Improved 3D
experience on mobile phones is set to revolutiotiizenultimedia market and a key challenge is
identifying useful 3D visualization methods and igation tools that support the exploration of data
driven 3D interactive visualisation frameworks fBRI-data.
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Agriculture; Data Aggregation; Mobile Devices; 3Daphics

*Corresponding author at: School of Arts, Media &puter Games, Abertay University, Kydd
Building, Bell Street, DD1 1HG, Dundee, Scotland.U

Email: r.falconer@abertay.ac.uk



41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

1. Introduction

Delivering secure and sustainable provision of fomdter and energy, particularly in
the face of climate change and reduced carbon tsangea huge challenge. Precision
Agriculture (PA) and sustainable intensificatiors ieeen advocated as a scalable solution to
modern global food security challenges by savintetienergy, water and money (Karetsos
and Sideridis, 2014; Whitacre and Griffin, 2014ntaaa et al., 2007). PA stemmed from the
desire to manage farms more sustainably. Tradityo®A has been restricted to those that
can afford the latest technology, but maturatiod ahiquity of enabling digital and mobile
technologies are set to transform PA (Whitacre @niffin, 2014; Karetsos and Sideridis,
2014; Butler 2006). This is supported by various, WKSA and EU strategies for encouraging
innovation in agriculture (e.g. UK Agri-Tech Strgye (HM Government, 2013) and
associated AGRIMETRICS (Tiffin, 2017) and EUs FIWBRLOpez-Riquelmeet al, 2016)

accelerators) supporting a revolution in the useabé science from “farm to fork”.

Precision Agriculture (PA) is tightly coupled toethnternet of Things (IoT) and converting
big data, originating from heterogeneous sourc#s,information is a key challenge (Mulla,
2013; Zhang et al., 2002). There is however a gigwieed for “on the go” decision-making
tools for in-field viewing of relevant farm dat&viqg, 2012; Chittaro, 2006; Pombinho et al.,
2007). Mobile technology that interfaces with exigtfarm servers could deliver data that
offers early warnings of potential issues in tleddfie.g. assessing the risks of disease and pest
outbreaks or poor crop performance. The authorsssele a mobile tool as complimenting

the rich landscape of Farm Management Informatigstesn (FMIS) presented by Fountas et
al., (2015) and illustrated in Fig 1. However, togress there are two technical challenges

that need to be addressed:

» Streaming data efficiently from a farm server twoanmodity mobile device



65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

* Implementing and evaluating different interactid®@ and 3D visualisation methods

for the display of AGRI data on a mobile device

Previous mobile applicationggp9 have been developed for farmers and agrononists,
these apps are focused on specific needs (e.gnswient approximation), and utilise 2D
visualisation methods (Hopkins, 2013). Mobile desitablets and/or smart phones) are now
ubiquitous with more memory, faster processors &ature a programmable Graphic
Processing Unit (GPU) (Shebanow, 2013). GPUs caprbgrammed via special programs
called shaders,which permit sophisticated mobile graphics oncgereed for video games
and PC-based visual simulations (Akenine-Moéllealet2008; Falconer et al., 2015). Mobile
graphics hardware is designed to work with texidaéa efficiently. The benefits of using
high resolution aerial photography (Lange, 2001 iarteractive 3D landscapes (Lovett et al.,
2015) for enhancing user engagement has been dghgddi. Additionally mobile GPS
hardware can be exploited to ensure relevant dadalivered to users by linking GPS to the

Field of View (FoV) (Burigat and Chittaro, 2015;ificpoulos & Fountas 2015).

Recently (PIX 4D, 2016; Puri, 2016) released soféwtn construct 3D textured Digital
Elevation Models (DEM) of FARM DATA, captured usimgmanned aerial drone, or using
sensors. There is a growing recognition in the AG&itor that 3D visualisation is a useful
tool as exemplified by Gepiel et al., (2015), whar®C-based 3D visualization of in-field
sensor data is created. Areview of ICT-AGRI ERA-NEU funded projects for 2010 to
2015 features few utilising 3D content with the epiton of VAROS (Jordan 2015). Further,
there is a paucity of mobile applications for PAhwnteractive 3D visualisation and this is
primarily a consequence of two issues. Firstly,gkils set associated with 3D graphics does
not intersect with the traditional AGRI sector. 8edly, the real benefits of mobile 3D

content have yet to be discovered in this seé&bthe time of writing, the authors were not
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able to find a specific example of a 3D visualiaatspecifically for crop yield analysis on a

mobile platform.

A software framework for streaming and renderintada 3D, with potential applications to
crop scouting, is presented based on mobile gamlenééogy. The software framework
combines virtual texturing and streamed farm datanform ‘on the go’ decision making.
The technology is demonstrated using crop yiela datd high resolution aerial photography
although it can in principle display other AGRI @afThe proposed AGRI-AG mobile app,
enabled only by the multidisciplinary convergenégame technology with AGRI data, has
the potential to transform in-field crop monitoriragnd inform early decision-making by
growers to improve efficiency/profitability of tifarming industry, providing healthier, more

affordable food for the future.

2. Software Development

2.1 Application

The Model Viewer Controller (MVC) is a common ane@livlocumented software design
pattern (Vlissides et al., 1994) and this methogyplguided the development of the app.. The
MVC pattern is widely used and suitable for apglmas that require user input via a
graphical user interface (GUI). The MVC patternaiso the default and recommended

software design pattern for developing Android aapions (Phillips and Hardy, 2013).

Insert Figure 1 here

Figure lillustrates how the AGRI-AG app can integrate ithe existing FMIS landscape,
which is reviewed in Fountast al., (2015), to support crop monitoring illustrated énday

deliveringyield maps.

Insert Figure 2 here
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Fig. 2 shows the components of the AGRI-AG applicgtimplemented as an Android

mobile app and highlighting the data streamingg¢essing and rendering stages.

AGRI-AG user input is facilitated through the m@b#épp’s user interface as well as GPS
functionality. Users can navigate the 3D scene gugastures for zooming, rotating and
panning the 3D scene. The GPS coordinates aretosettre the users view in the 3D scene,
which acts as a virtual camera so that users caalyfmavigate the scene. The different

methods for AGRI-data presentation is by the tagpbf radio buttons.

The 3D scene comprise a textured Digital Elevahtodel (DEM) and different methods to
present yield data (in 2D and 3D). Two streaminghoeés delivering large textures e.g. high
resolution aerial photography from UAV, but thisutbalso be satellite infrared imagery for
assessing crop health, are investigated. Although desire is to integrate the mobile
technology with existing farm servers, for thiseaxh the test data (spatio-temporal yield
data and high resolution imagery) was stored ogn@ote server located at the university, as

the PA company is a live business operation.
2.2 Data Format Specifications

The main data types that AGRI-AG deals with aregenétextures) and text files. The image
files are used to generate the 3D geometry foDiggal Elevation Model, as well to provide
texture overlays for the yield data and aerial pgphy. The image data files are JPG
image files which are faster to decode on the motaiblet hardware and have reasonable
compression (Thiagarajan, 2012). The text filesestpeld data values that are parsed and
used to generate representative 3D primitives.t&kieused to store the sampled yield data is
stored as a standard CSV (Comma Separated Vakie)ilee The streamed data from the
server is encoded as Base64 string data files. iSheasconvenient format that encodes the

data to a Base64 hexadecimal ASCII file encodirfys Tormat is used because it requires
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less calls to be made to the server and the ratjdia¢a is packaged and sent as a single
Base64 data file form the server to the clienthgigither long-polling HTTP or WebSockets-
based client/server communication model (Popov9R0Presently the yield maps used for
the visualisation by AGRI-AG are not generatedealrtime. Instead they were generated
offline using yield mapping software, GS+ (GammagiesSoftware, 2016). Generating yield
maps require the use #friging algorithms, which are compute intensive, but cdoéda
prime candidate for parallelisation on mobile desgiin the future. The CSV file is used i) as
input into a Block Kriging algorithm to generateethnterpolated yield map images
mimicking what would be done on the farm servereSghimages are then exported, along
with a standard colour table used by GS+, as JRE&ge files, and transferred to the test
server which can be downloaded by the app as ne&dgpde 3 below illustrates the process

of acquiring the yield data which is then presentedarious forms as described below.

Insert Figure 3

2.3 The 3D Rendering Pipeline and Data Visualigatio

The AGRI-AG app features various 2D and 3D visadiesy methods based either on

textures or 3D primitives, that represent the widgricultural context and crop yield data.

Since visualisation methods can be prohibitivelgensive to compute on the CPU, the GPU
is used to offload the required processing fromGJ. The visualisation methods used for
AGRI-AG are implemented in shaderwritten in GLSL (OpenGL Shading Language, a C-
like programming language for shaders (Munshi, 2008 part of the 3D graphics

programmable pipeline/ertex shadecode is used to define how the GPU will handle the
vertex data associated with the 3D objects (Breth&@013). The vertex shader computes the
vertex position, vertex normal and the texture dowtes of a 3D object being rendered. This
data is streamed to tlieagment shadewhich computes the final pixel colour based on the

object colour, texture (image data) and shading ehaged. Basic Gouraud shading is
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implemented on a per-vertex basis, and is usedrttbme the texture, scene lighting and 3D

object colour (Gouraud, 1971).

2.3.1 Texture-based Landscape Visualisation

The 3D Digital Elevation Model (DEM) that capturdse topography of the landscape is
represented using an image (Mach and Patschek).ZD®ig image can either be taken by a
UAV or obtained via third party sources (such asl@nce Survey UK). Increasingly this
type of image data is large in terms of resoluaod must be resized and resampled before
use on mobile devices. Using standard graphicsranmging approaches 2D textures, also
represented as an image, can be mapped onto tiESD These 2D textures can be either
high resolution aerial photography, capturing fesguof the landscape, or colour-mapped
yield data derived from block Kriging algorithmso Tncrease rendering speeds, the image
data (both DEM and imagery) is discretized intcfanm regions of smaller tiles (Fig 4). The
AGRI-AG texture management component selects apiatepresolution tiles using Level of
Detail (LOD) methods. The tile selected is basedtlom distance between the viewer
(camera) and the land tile as illustrated in Figvi&thods for streaming and downloading the

tiles are presented in section 2.4.

Insert Figure4 & 5
2.3.2 3D Yield Map Visualisation

A 3D yield surface can be used to convey the hgereity in crop yield by both colour
and/or height. The yield data is used to extru@epiikels based on the crop yield value. This
generates a 3D surface where low and high heightsespond to low and high yields
respectively. Fig. 6 shows the 2D and 3D yield nfapgomparison. The shading model uses
a lookup table of pseudo-normals to increase thdenreng speeds during visualisation. This
was implemented primarily as an optimization metfiod running the app on lower-end

mobile tablets, as GPU does not need to computedittex normal directions every frame.
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Insert Figure 6

2.3.3 3D Spatially Averaged (Aggregated) Data Visaéion

One way to visualise large amounts of quantitaipatial data is using spatial averaging
methods (Spence, 2001). The number of yield datatpto average are specified and the
appropriate block/area size is then calculated. dé&ta is assumed to be homogeneously
distributed, which is a fair assumption for thipayof data. At the centre of each block a 3D
cuboid is generated, the height of which is scdlgdhe calculated averaged vyield value.
Other geometrical primitives can be used such ass;spheres or cylinders. The aggregated
data is read as raw data fromCama Separated ValugCSV) data file, which can be
downloaded from the server, and includes the yiaklitude and longitude values. The fewer
points per bock will result in more 3D object priiveés to be displayed (Fig 7). The
aggregated 3D visualisation method also uses “mseodmal” calculations for surface
shading. Therefore, all 3D objects have the sam@davertex normals thus they are all lit

and shaded in one direction.
Insert Figure7

2.4 Texture Streaming Methods

Methods implemented in AGRI-AG for streaming higisalution data from the farm server
include HTTP and WebSockets (Andersson and Goran26d.2). HTTP is a default
standard for data transfer between web connectgtcations on mobile devices, and
WebSockets are currently becoming more widely @setlare an already adopted standard
(Grigorik 2013). HTTP based streaming makes uséaf polling" HTTP method where a
connection to the server is established and tleatalequests data. After a set time-out
period, the connection is closed and the clientb@®nnect to the server again.

Alternatively, WebSockets allow for a constant cection to be maintained between the
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client and server. WebSockets make use of bi-daeat communication between the client
and the server, and the connection is kept corgtapén. Data transmission is considered to
be low-bandwidth as the data packets are tranginittethe WebSockets protocol run on top
of a single TCP connection (Grigorik, 2013). Figll&strate how the HTTP long-polling and

WebSockets communication works between the cliedtsgrver
Insert Figure 8

2.5 AGRI-AP Performance Evaluation
2.5.1 Benchmarking of app and data visualisatiahteques

As the aim was to ensure interactivity of the app tkey performance indicators were
measured for the different visualisation methodsantes per Second (FPS) and the
Milliseconds per Frame (MPFS). The RAM and CPU esagre also monitored. The mobile
tablets used for testing were the Asus Google Néxasd HTC Google Nexus 9 tablets.
These tablet models were chosen because they pravgbod range for comparison across
the hardware capability spectrum. The Asus Googieud 7 tablet is an older generation
Android mobile tablet with support for version ©8the Android operating system (called
“Jelly Bean”). It features a 1.51 GHz quad-coreiKB90 CPU, 2 GB DDR3L RAM and a
Qualcomm 400 MHz quad-core Adreno 320 GPU. The KBDBgle Nexus 9 tablet is a more
powerful Android tablet featuring support for Anat®.0.1 (called “Lollipop”). The Nexus 9
features a NVIDIA Tegra K1 CPU (2.3 GHz dual-corelst “Denver”), 2 GB LPDDR3-
1600 RAM and a NVIDIA Kepler GPU. The most sign#iit difference between the two
Nexus 7 and 9 tablets is the support for 3G/4G haobetworking supported only by the
Nexus 9. All of the profiling was done using the ARlebug tools within the Eclipse

integrated development environment (IDE).
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2.5.2 Data Streaming

Two use cases were selected for evaluating thamsing methods: high connectivity (via
Wi-Fi) and low connectivity (via 3G). Testing théeaming in these two environments
reflected the conditions in which the app would used. The chosen high-connectivity
environment was the Abertay University campus damel gtreaming methods were tested
using a standard Wi-Fi network connection. The ehdew-connectivity environment was

Tentsmuir Forest in Fife, Scotland (see Fig. 9).

Insert Figure 9

The HTC Google Nexus 9 was used as the main témahe low and high-connectivity
environment testing. The Google Nexus 9 tablet used as it features support for 3G/4G
mobile communication, which is essential for tegtin the field. The streaming testing
protocol included downloading a single large 2048 compressed JPEG image tile for a

given DEM tile region and recording the time to chdead.

2.5.3 User evaluation

A focus group was set up to determine the userepéions of the different visualisation
techniques. The focus group was recruited to retlee potential user base and included
digital and non-digital natives. The focus groupalved downloading the app on the user’s
own devices and trialling the functionality anduadisation methods. The qualitative testing
focussed on usability, visual preference and ovemapact — which participants worked

through at their own pace. There were eight padiais in the user testing group, which
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included farmers, agronomists, PA technologists awsddemics. The questionnaire is

presented in App 1.

3. Results
3.1 Data Visualisation techniques

Fig. 10 shows the results of the visualisation mémphes implemented to display the yield data
for a given field. The 2D colour coded map Fig.d)0s the most familiar style to farmers

and agronomists.

Insert Figure 10

Fig. 11 shows an “exploded view” of time seriesldjidata for the same field. This
emphasises the customisability of visualisatio®@RI data afforded by the programmable
pipeline on mobile devices. Alternative methodsanfmating time series data is shown in

Fig. 12.

Insert Figure 11

Insert Figure 12

3.2 Performance Results

Fig. 13 - 16 show the average FPS, MFPS, RAM uaageCPU usage results for each of the
visualisation methods tested on the Nexus 7 arabl@ttdevices. Higher FPS values indicate
better rendering performance, while smaller MFPIBevandicate higher rendering efficiency

(less time spent) rendering each frame. Lower CRt) RAM usage values are preferred.

Each of the performance tests were replicated rhBgito obtain a distribution. The data is
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not norammaly distributed therefore error bars aoé presented on the charts. For the
aggregated data visualisation methods, the pompkasize of 10, 30 and 50 was chosen for
the benchmarking which results in 1546, 537, 3388Ditives to render. RAM usage is far
lower on the Nexus 9 than on the Nexus 7 due taiseeof the new runtime ART VM, which
has more optimizations than the previous VM verddatvik which is used by the Nexus 7.
Interactive performance on the Nexus 9 is slighttyse than on the Nexus 7. This is because
the application was developed originally for versi.3 of the Android operating system
running on the Nexus 7 tablet. Nexus 9 uses verSiaf the Android operating system
(called “Lollipop™) and also uses a completely esifjined version of the runtime virtual
machine (VM) called ART (Toombs, 2013). The codeswsot ported nor optimized
specifically to make use of any of the new featwksersion 5 of the Android operating

system.

Insert Figure 13
Insert Figure 14
Insert Figure 15

Insert Figure 16

3.3 Texture Streaming Results
The time taken to downloatle 2048x2048 compressed JPEG texture image udiig tdnd Web

Sockets in digh and low connectivity environment is presenteérig. 17. The connectivity

results show that in a high connectivity environméme use of WebSockets for streaming on
the Nexus 9 tablet is significantly faster in comgan to HTTP-based streaming (see Fig.
17). Testing in a low-connectivity environment weesformed using only the Nexus 9 tablet

as it features support for 3G communication. Tlseilte obtained from the low-connectivity
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environment show that the usage of WebSockets-bstseaiming is faster than HTTP-based
streaming. The performance variances found in thebS$@ckets-based streaming method
using the 3G network connection protocol are duentm-standardized support for
WebSockets over the 3G communication network. Tias been researched and reported by
(Estep, 2013), and his research concludes that W&de® performance can vary

significantly depending on the network communicaowotocol that is being used.

Insert Figure 17

3.4 Qualitative User Testing Results

The app was tested by exploring and monitoring grefals of a single field over time and
with different presentation modes summary of the testing together with some statéme
from users is presented The user interface wasidedas having a clean layout and
graphical style but there was however some issithstiie navigation being non intuitive.
The users requested both gesture based navigaiiba mavigation wheel such as in Google
maps. With regard to visual preference the usemddhat the use of aerial photography
overlaid on top of a 3D digital elevation model viEmeficial for contextualising the main
features (e.g. farm fields, buildings, lochs). &snalso noted that the texture resolution
should be higher and more crisp when the user zawnhost users rated the two
interpolated crop yield data time series rendeth thie highest preference. A suggestion was
made to include an "exploded view" of the yieldadfair the different years, as well as the
ability to playback and through time series usingdgo-like playback interface. These
features have been added for the final releaséowvens the app as shown in Fig. 11 and 12.

The overall impact section revealed that users wenerally satisfied with the app, but
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improvements could be made by incorporating otla¢éa duch as chemistry (PH, nutrient),
soil values / soil texture, rainfall per weé€bne test participant wrote on the feedback form:
“Both method¢top down and 3D view)f the land area are useful. What | like most &t th
the 3D terrain model could show field terrain bettgan 2D(map)” Some users found the
3D spatially averaged visualisation method to biqdarly engaging, especially when
compared to the 2D yield maps. Another particigated that what they liked most about
the app wasrapid visualisation of yield databut that they disliked the3D view of
aggregated data’ The ability to animate through time series da#s &lso positively
received. The users found it useful to switch betwthe visualisation methods seamlessly
and in real-time. One tester stated in the feedbze The tilted top-down view is easier to
see and to control but that a top-down view is aiseful in certain scenarios. (App) doesn'’t
seem to have noticeable performance hits (whenmgt@rrain) and greatly aids the user in
determining where they are lookihdreservations were made about the lack of geftased
scene navigation, the method for zooming in andbtite scene (as this was tied to button
controls rather than gesture based controls). €stertcommented thaButtons have
confusing terminology (hames) and that verticabawitation is opposite to what | expéct.
and another mentioned thak feset button for navigation should be added alaity

gesture based controand that pinch (zoom) function would be nic&he navigation

control issues were addressed and changed to ciengasture based control after the

feedback was provided.

4. Discussion

The research findings have shown that high-reswiwerial photography and crop yield data
can be streamed from a remote server and displey@ah interactive context on mobile

devices. It is shown in both low and high connetstienvironments that WebSockets are
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significantly faster than using HTTP-based stregmniWVebSockets make use of bi-
directional communication between the client anel slerver. The connection between the
server and the client is kept alive throughout¢bexmunication period. Therefore data can
be transmitted between the client and the serveuls&neously without opening and closing
the connection. This makes the WebSockets commiummcarotocol comparable to low-
latency network data transfer and has increased ptiodocols popularity for use in

applications that require low-latency real-time coumication (Grigorik, 2013).

Further the application performance results shaat tire implemented visualisation methods
can be rendered in real-time. The issues highldgbieChen et al 2015 with respect to data
analysis and presentation being a bottleneck irc&#Ato some degree be overcome with the
presented framework. The varying preferences wébpect to visualisation techniques
further support that a suitable way forward is o the users with a selection of methods
to choose from. It is suspected that those thatuaesl to 3D visualisation and considered
digital natives may find the 3D methods more inmteitwhilst others do not. The flexible
customisation of data presentation, achieved bgraromable pipelines, is useful for a large
user base where new ‘effects’ can be tried out.

Improved 3D experience on mobile phones is set\tolutionize the multimedia market and
a key challenge is identifying useful 3D visualiaat methods and navigation tools that

support the exploration of data driven 3D interaetrisualisation frameworks.

5. Conclusion

The developed AGRI-AG application demonstrates tmatbile devices are capable of
streaming and displaying 3D maps of farm AGRI datajovel ways on commodity mobile
devices, within an interactive 3D context. This nhaypefit stakeholders in terms of enhanced
engagement and delivery of context-aware and retedata. Different data visualisation

techniques have been described, implemented aeds&ssfor presenting farm data and the



381 wider geographical context. The power consumptiod the effect AGRI-AG has on the
382 mobile device battery life was not determined. Bgiee in-field testing of the application to
383  specific agricultural tasks is also part of futwerk. The AGRI-AG application can be
384 improved by having better integration with web thaise services for accessing aerial
385 imagery and geospatial data in real-time as wefbasiploading data to a farm server. The
386 core platform can be applied to many other spaad-rich sectors including environmental

387  monitoring and homeland security.
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Figure Captions

Figure 1: Example integration of the AGRI-AG app, and relaa@g inputs, into an existing

FMIS. Adapted from Fountas et al 2015.

Figure 2: Flowchart diagram illustrating the key componerithe AGRI-AG framework.

Figure 3: The yield map generation process using offlinegmeeessing. The offline
generation of yield maps is done using GS+ softwahere the generated yield map along
with the colour table are exported as image fitebd used in the main AGRI-AG interactive
visualisation scenario. The yield map image databsaused for both 2D and 3D projections

for visualisation purposes of stakeholder engagémen
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Figure 4: Example of the LOD tile selection for AP imagesed in AGRI-AG.

Figure 5: Correspondence between a) the location of theteeldarmland area, b) tiled

aerial photography image data and c) the tiledaliglevation model.

Figure 6: Visual differences between the 3D (left) and 2iQHt) yield map visualisation

methods.

Figure 7: The spatially averaged algorithm using 1 pointigeck shown within the 3D

context and showing Lat Long coords in top lefte TUI layout is also shown.

Figure 8: lllustration showing communication between clidavice and server usira)

HTTP Long-Polling based arx) WebSockets-based connectivity methods.

Figure 9: Pictures from the low-connectivity testing sitelianstmuir Forest, Fife, Scotland.

Figure 10: Examples of the three data visualisation techniga)e2D mapb) 3D map andc)

aggregated 3D visualisation

Figure 11: Examples exploded display of yield time seriegdat

Figure 12: Frames of a time animation of the yield data
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Figure 13: Average FPS performance result.

Figure 14: Average MFSP performance result.

Figure 15: Average RAM usage performance result.

Figure 16: Average CPU usage performance result.

Figure 17: High and low-connectivity environment testing léson the Nexus 9 tablet. The

milliseconds correspond to the elapsed image textawnload time.



