Adaptive radiation of P. fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm-formation

Anna Koza, Anna Kuśmierska, Kimberley McLaughlin, Olena Moshynnets and Andrew J. Spiers

This is a pre-copyedited, author-produced version of an article accepted for publication in FEMS Microbiology Letters following peer review. The version of record is available online at: https://doi.org/10.1093/femsle/fnx109

Adaptive radiation of *P. fluorescens* SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm-formation

Anna Koza¹,², Anna Kuśmierska¹,³, Kimberley McLaughlin¹,⁴, Olena Moshynets⁵ & Andrew J. Spiers¹*

¹ School of Science, Engineering and Technology, Abertay University, United Kingdom.
² Current address: Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Denmark.
³ Current address: Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Poland.
⁴ Current address: Australian Institute of Tropical Health and Medicine, James Cook University, Australia.
⁵ Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Ukraine.

* Corresponding Author: Andrew J. Spiers
School of Science, Engineering and Technology, Abertay University, Bell Street, Dundee, DD1 1HG, United Kingdom. Tel: +44(0) 1382 308730 Email: a.spiers@abertay.ac.uk

ORCID Author identifiers –
Anna Koza 0000-0001-9713-5232
Anna Kuśmierska 0000-0003-1214-4549
Kimberley McLaughlin 0000-0002-6018-4310
Olena Moshynets 0000-0002-2209-8681
Andrew Spiers 0000-0003-0463-8629
Abstract (200 / 200 words)

Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of *Pseudomonas fluorescens* SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm–forming mutants such as the Wrinkly Spreader. In these microcosms, the ecosystem engineering of the early wild-type colonists establish the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that de-regulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O₂ diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function.

One sentence summary: (29 / 30 words) The *Pf. SBW25* experimental system has revealed the evolutionary dynamics and molecular biology of the adaptive biofilm-forming Wrinkly Spreader, providing an insight into bacterial adaptability, radiation and competitive fitness.

Keywords: Adaptive radiation, biofilms, competitive fitness, ecological opportunity, intrinsic potential, key innovation.

Introduction

Experimental studies of microbial evolution have been used to investigate adaptive radiation, a key element in the development of ecological diversity within expanding lineages, and ultimately, in the creation of new species (see Schluter (2000) and reviews by, e.g. MacLean 2005; Buckling et al. 2009; Losos and Mahler, 2010; Dettman et al. 2012; Bailey and Bataillon 2016; Dykhuizen 2016). In particular, the use of bacterial populations in simple laboratory microcosms has allowed the rapid establishment of links between evolutionary dynamics and the molecular biology underlying adaptive genotypes and key innovations (i.e. changes in phenotype that facilitate improvement in fitness).
One very successful experimental system uses the soil and plant-associated pseudomonad *P. fluorescens* SBW25 (Rainey and Bailey, 1996) in static liquid microcosms where it gives rise to adaptive Wrinkly Spreader (WS) mutants that colonise the air-liquid (A-L) interface through the formation of a cellulose matrix-based biofilm (the key innovation). The nature of WS mutations, phenotype and fitness can now be explained by integrating evolutionary dynamics with an understanding of the underlying molecular biology (reviewed by Spiers, 2014), and involves a deterministic connection between mutations that subvert regulatory systems to induce biofilm–formation, and more stochastic fitness measurements based on population dynamics sensitive to environmental conditions and initial conditions (see Table 1 for the key challenges and opportunities for *Pf.* SBW25 colonisation of the A-L interface in static microcosms). We believe there are key insights that can be drawn from this model system with links to fundamental microbial biology often overlooked by molecular biologists, relevant to our understanding of the versatility of bacteria and their ability to colonise new environments in the context of pathogenicity, natural and engineered microbial communities.

Radiation in static microcosms and the colonisation of the air-liquid interface

The adaptive radiation of *Pf.* SBW25 has been studied using microcosms (small glass vials) containing nutrient-rich King’s B growth medium which are typically initiated with a founding population of ~10^4 cells and incubated over three to five days under static conditions (Rainey and Travisano 1998; Spiers et al. 2002; Green et al. 2011). During this period the population increases to ~10^{10} cells, and evidence for radiation or diversification can be seen in the appearance of mutant genotypes distinguishable through altered colony morphologies (for this reason they are often also referred to as morphotypes). The establishment of such diversity within the developing population is influenced by spatial structure, nutrients and patterns of physical disturbance (environmental heterogeneity or grains), resource competition and productivity (e.g. Rainey and Travisano 1998; Buckling et al. 2000; Kassen et al. 2004; Buckling et al. 2007; Venail et al. 2011; Armitage 2015).

One class of mutants, known as the Wrinkly Spreaders (Figure 1), also shows an altered niche preference when re-introduced to static microcosms where they colonise the A-L interface through the formation of robust biofilms, in contrast to the wild-type or ancestral *Pf.* SBW25 which grows throughout the liquid column (see Ferguson et al. 2013 for a description of another biofilm–forming morphotype known as the Fuzzy Spreaders). The Wrinkly Spreaders have a competitive fitness advantage when at low frequencies compared to the numerically dominant non-biofilm–forming competitors in static microcosms, but not in shaken microcosms where biofilms cannot form or on
agar plates where the Wrinkly Spreader (WS) phenotype is a costly disadvantage (e.g. Rainey and Travisano 1998; Spiers et al. 2002; Spiers 2007; Green et al. 2011; McDonald et al. 2011; Lind et al. 2015).

Whilst most biofilm research is focussed on the formation of liquid-solid surface (L-S) interface biofilms in flow cells or micro-titre plates, the ability to produce A-L interface biofilms in static microcosms is common amongst environmental Pseudomonas spp., including water and soil isolates, plant-associated and plant pathogenic strains, mushroom pathogens, and psychrotrophic pseudomonads recovered from spoilt meat (Ude et al. 2006; Koza 2011; Nielsen et al. 2011; Robertson et al. 2013) as well as in the opportunistic human pathogen P. aeruginosa (Friedman and Kolter 2004). Other examples of A-L interface biofilm–formation may exist where staining of biofilm material attached to vial walls has been measured but where no description of growth over the liquid surface is provided, e.g. in microtitre plates or Calgary biofilm devices in which it is difficult to view biofilms in situ (A-L interface biofilms are sometimes also referred to as pellicles, but see the opinion piece by Moshynets and Spiers 2016). Although substantial variation has been observed amongst pseudomonad A-L interface biofilms, they can be categorised into classes and types (Ude et al. 2006; Robertson et al. 2013), and further differentiated using a combined biofilm assay measuring biofilm strength, attachment levels and total microcosm growth (Robertson et al. 2013). This approach, alongside fitness measurements and assays quantifying additional aspects of the WS phenotype, (collectively known as wrinkeality), demonstrate significant WS variation (Figure 2) and suggests that Wrinkly Spreaders arise through mutation of a number of different loci that are linked to a common pathway which establishes the WS phenotype sensu stricto (i.e. a wrinkled colony morphology on plates and biofilm-formation in static microcosms) (e.g. MacLean et al. 2004; McDonald et al. 2009; Green et al. 2011; Lind et al. 2015; Udall et al. 2015).

A key insight we draw from this section is that developing populations have the potential to diversify and produce adaptive genotypes that might out-compete the original colonists or colonise new niches. This has significance in the development of infections, natural and engineered microbial communities, where genotypes may change over time effecting host-pathogen interactions, community structure and function.

Underlying molecular biology of the Wrinkly Spreader

The WS phenotype results from mutations in genes expressing proteins involved in the homeostasis of the intracellular signalling compound c-di-GMP, with mutations commonly found in the methylesterase WspF subunit of the chemosensory signal-transduction–like Wsp system that lead to the activation of the associated diguanylate cyclase (DGC) WspR, increased levels of c-di-GMP and
the expression of cellulose required for the WS biofilm (Figure 3 A&B) (Spiers et al. 2002; Spiers et al. 2003; Bantinaki et al. 2007; McDonald et al. 2009; McDonald et al. 2011; Udall et al. 2015). For example, in the archetypal Wrinkly Spreader the wspF mutation is a single nucleotide A – C transition which results in a serine – arginine change at position 301 of the protein (wspF S310A). This mutant subunit is predicted to show reduced methylsterase activity based on the crystal structure of the homologous CheB from Salmonella typhimurium (West et al. 1995) that results in the de-repression of WspR and the synthesis of c-di-GMP (Bantinaki et al. 2007). Allele exchange experiments swapping wspF mutations in Wrinkly Spreaders to the wild-type sequence, and vice versa, have demonstrated that these are sufficient for the WS phenotype and fitness (Bantinaki et al. 2007).

Increased levels of c-di-GMP lead to the over-expression of partially-acetylated cellulose through the allosteric activation of the cellulose synthase complex (Spiers et al. 2002; Spiers et al. 2003).

Although cellulose expression is common amongst pseudomonads and other bacteria (Ude et al. 2006; Nielsen et al. 2011; Robertson et al. 2013; Arrebola et al. 2015; reviewed by Spiers et al. 2013; Römling and Galperin 2015), the modification of this polymer by Pf. SBW25 using alginate acetylation–like subunits is rare and has only been reported for several phytopathogenic pseudomonads including P. syringae pv tomato DC3000 and the distantly-related Bordetella avium 197N (Arrebola et al. 2015; McLaughlin et al. 2017). Cellulose is the primary matrix component of the WS biofilm, although a Congo red-binding attachment factor induced by high c-di-GMP levels and lipopolysaccharide (LPS) are also required for the WS phenotype (Spiers et al. 2002; Spiers et al. 2003; Spiers and Rainey 2005). The WS attachment factor has been genetically identified as PGA or PNAG (poly-beta-1,6-N-acetyl-D-glucosamine) encoded by PFLU0143 – 0146 (Gehrig, 2005; Lind et al. 2015), though attachment may also involve amyloid fibrils encoded by the conserved fapA-F genes identified in the genome of Pf. SBW25 (PFLU2701 – 2696) and a range of other pseudomonads (Dueholm et al. 2013).

The hydrophobicity of either PGA or fibrils would allow WS cells and the biofilm matrix to break the A-L interface, suspending the biofilm from above and attaching the periphery of the biofilm directly to the vial walls (after de Jong et al. 2009). Like many other biofilms, the WS biofilm is likely to be chemically complex with multiple extracellular polymeric substances (EPS) including cellulose and PGA, LPS, appendages such as pili and flagella, as well as cell debris, all contributing to biofilm strength and attachment (Spiers and Rainey 2005). For example, our recent investigations of biofilm samples has identified extracellular DNA (eDNA) in line with previous observations of P. aeruginosa PA01 biofilms (Whitechurch et al. 2002) and a homologue of the major outer membrane porin OrpF (PFLU4612) from P. aeruginosa PA01 which affects cell surface properties and adhesive capabilities and is linked to c-di-GMP regulation (Bouffartigues et al. 2015) (Olena Moshynets, Airat Kayumov, Svitlana Rymar and Andrew Spiers, unpublished observations).
The Pf. SBW25 c-di-GMP regulatory network is likely to be complex as 39 putative DGCs including WspR have been identified in the genome (Silby et al. 2009), and a combination of c-di-GMP, transcriptional and metabolic systems probably control the expression of cellulose on plant surfaces under natural conditions (Gal et al. 2003; Giddens et al. 2007; Huang et al. 2007b). However, in static microcosms mutations occurring in only a few DGCs or related genes appear to be able to act independently to produce sufficiently high levels of c-di-GMP required for the WS phenotype (Bantinaki et al. 2007; McDonald et al. 2009; McDonald et al. 2011; Lind et al. 2015; Lind et al., 2017). There are striking similarities between the small suite of DGCs or related genes which lead to the WS phenotype in Pf. SBW25 and those producing small colony variant (SCV) morphologies in P. aeruginosa isolates from Cystic fibrosis lungs (Smith et al. 2006; Malone et al. 2012; Malone 2015), and that in P. aeruginosa PA01, the overproduction of Pel and Psl EPS is also associated with mutations in wspF and increased c-di-GMP levels (Starkey et al. 2009).

The WS phenotype-activating mutations are examples of adaptive mutations activating intrinsic genome potential resulting in the expression of a key innovation (i.e. biofilm–formation allowing the colonisation of the A–L interface; here we use ‘genome potential’ to refers to sequences that provide some functionality when expressed under certain circumstances, but which could be expressed in under different conditions where that function or a modification of that function might provide a novel advantage). Although key innovations might arise through the creation of new genes de novo or through duplication and divergence of existing sequences (i.e. the innovation–amplification–divergence model), the re-deployment of existing pathways through disruption of regulatory systems allows phenotype divergence and fitness increases to occur more readily and with greater impact (Behe 2010; Andersson et al. 2015).

A key insight we draw from this section is that regulatory systems can be subverted by random mutations to activate extant but unexpressed or otherwise–repressed pathways and express complex adaptive phenotypes. This has significance in pathogenicity and the exploitation of natural and engineered microbial communities, where substantive phenotype changes may cause problems in treatment and community structure and function, or provide new opportunities in processing and production.

Ecosystem engineering and the creation of niche space

The static microcosm initially represents an unstructured or homogeneous environment for colonisation, with a uniform O$_2$ concentration down the liquid column (Koza et al. 2011) (Figure 3C). However, this is rapidly degraded by the metabolic activity of the first Pf. SBW25 colonists which
establish an O$_2$ gradient within hours that differentiates the microcosms into an O$_2$-rich layer ~200 µm deep at the top of the liquid column and an O$_2$-depleted zone below. The ecosystem engineering of the colonists and the radiation of the population as it develops provides both an ecological opportunity (in the form of a new niche space) as well as the adaptive Wrinkly Spreaders who are able to exploit this modification of the environment (Figure 3 D&E) (similarly, Pf. SBW25 also modifies the growth medium to which subsequent genotypes adapt, Callahan et al. 2014). Ecological opportunity and adaptive radiation are interlinked and include growth and selection feedback mechanisms, as the parameters of the new niche space and the requirements of the adaptive genotype need to be well-matched for successful colonisation (Losos and Mahler, 2010; Yoder et al. 2010; Odling-Smee et al. 2013; Matthews et al., 2014; Steenackers et al. 2016). Changes which effect O$_2$ and nutrient levels, or the physical dimensions of the microcosm, all impact on WS fitness and confirm the link between the O$_2$-rich niche and the WS adaptive genotype (Koza et al. 2011; Kuśmierska and Spiers 2016).

The competitive advantage of the Wrinkly Spreader compared to non-biofilm–forming genotypes is negative frequency-dependent (e.g. Rainey and Travisano 1998; Meyer and Kassen 2007). The basis for Wrinkly Spreader success appears to be the rapid domination of the A-L interface by a thin biofilm that intercepts O$_2$ diffusion into the liquid column and limits the growth of other competitors lower down (nutrient levels are comparatively high in King’s B microcosms and only begins to limit growth when diluted to very low levels) (Koza et al. 2011; Kuśmierska and Spiers 2016). Access to high levels of O$_2$ alters cellular physiology and allows increased growth, final population sizes and biofilm thickness (Spiers et al. 2003; Huang et al. 2007b; Koza et al. 2011; Kuśmierska and Spiers 2016), and at an early stage of biofilm–formation, most competitive interactions are between the thin layer of Wrinkly Spreaders and the larger non-biofilm–forming population. The adaptive radiation of Pf. SBW25 follows the parapatric niche divergence of the high-O$_2$ layer from the lower region which becomes progressively O$_2$-depleted, though there is no physical barrier to migration between these two sections of the microcosm (Figure 3 D&E). The Wrinkly Spreaders have a significant impact on this niche divergence, as shallower O$_2$ gradients are formed by populations lacking Wrinkly Spreaders (Loudon et al. 2016).

As the WS biofilm matures and deepens, it too divides into a physically-structured upper high-O$_2$ layer and a lower O$_2$-depleted region. During this period competition increasingly occurs between diversifying WS lineages rather that between Wrinkly Spreaders and non-biofilm–forming competitors. This situation is reminiscent of the Red Queen hypothesis (Liow et al. 2011) in which constant competition and adaptation is required for continued Wrinkly Spreader success. This may be mediated or modified by a variety of other evolutionary processes operating within the static microcosms. Kin selection may help develop physically or metabolically-defined niche spaces where cell dispersal is limited (West et al. 2006), and an ancestor’s inhibition effect may also where parental
cells are suffocated by layers of daughter cells growing above them (Xavier and Foster 2007).

Furthermore, the continued development of the biofilm will be effected by the increasing number of cheaters no longer contributing to the construction or maintenance of the biofilm (e.g. Rainey and Rainey 2003; Brockhurst et al. 2006; Brockhurst 2007). The development of environmental heterogeneity and genotype diversification in these static microcosms (Figure 3 D&E) is predicted by dissipative systems theory where O$_2$ supply is effectively considered a free energy gradient (Loudon et al. 2016), and the complexity of the biofilm community will continue to develop until limited by resources or by physical disturbance causing the structure to sink (this event can be considered a systems failure despite the fact that King’s B microcosms have sufficient nutrients to allow the development of a second-generation biofilm if allowed, Spiers et al. 2003).

A key insight we draw from this section is that populations change local conditions which may favour the development of adaptive genotypes, and such cycles of change and selection are the basis of ecological succession. This has significance in pathogenicity, especially in chronic infections and gastro-intestinal tract disorders, as well as in natural and engineered microbial communities, where the original consortia may be invaded by new members that alter community structure and function.

Influence of the environment on adaptive radiation

The linkage between ecological opportunity and adaptive radiation suggest that WS evolution, wrinkleness and fitness should all be sensitive to environmental conditions. Indeed, the diversification of Pf. SBW25 populations and the maintenance of diversity is effected by structure, physical disturbance, and resources including O$_2$ and nutrients, and variation in WS fitness has been observed within different collections of isolates (e.g. Buckling et al. 2000; Kassen et al. 2004; Bantinaki et al. 2007; Koza et al. 2011; Lind et al. 2015; Armitage 2015; Kuśmierska and Spiers 2016). Manipulation of physical parameters including A-L interface surface area – volume ratios and the presence or absence of the high-O$_2$ meniscus ‘trap’ all impact on WS biofilm–formation and fitness (Kuśmierska and Spiers 2016), whilst a comparison of Wrinkly Spreaders isolated from static microcosms and glass bead columns has demonstrated differences in wrinkleness and fitness attributable to origin (Udall et al. 2015).

However, correlations between WS phenotype and fitness are poor, suggesting that measurements of microcosm growth, biofilm strength and attachment levels may not effectively capture those aspects of the WS phenotype selected for in static King’s B microcosms which also explain competitive fitness advantages (Udall et al. 2015). Furthermore, our attempts to differentiate between twenty-four Wrinkly Spreaders on the basis of wild-type or mutant wspF alleles (Bantinaki et al. 2007; McDonald et al., 2011) using phenotype data we have since collected has not proved successful (Andrew Spiers,
unpublished observations), and this suggests that the WS genotype to phenotype (G-P) map is likely to be equally difficult to establish.

Phenotypic variation is not random but is regulated by internal and external factors (Sharov 2014). Although allele replacement experiments have confirmed the importance of mutations in DGCs or related genes for the WS phenotype and fitness (Bantinaki et al. 2007; McDonald et al. 2009), internal factors such as antagonistic pleiotropic (and epistasis) effects may differ between Wrinkly Spreader mutations and produce variation within the WS phenotype sensu stricto. The multiple DGCs identified in the Pf. SBW25 genome suggests the complex and dynamic regulation of c-di-GMP homeostasis, with functional DGC redundancy upstream and c-di-GMP-sensitive pleiotropy downstream. Perturbation of c-di-GMP homeostasis may lead to variation in substrate utilisation patterns and fitness changes (MacLean and Bell 2003; MacLean et al. 2004), and the archetypal Wrinkly Spreader wspF S310A mutation results in proteomic changes in metabolic pathways not linked with the WS phenotype that might nonetheless be associated with fitness-reducing effects (Knight et al. 2006). Although homeostasis may appear to restrict phenotypic variation, the mutation of complex regulatory networks allows the adjustment and multi-tasking of functions, and the establishment of new connections between regulatory components and functions which may result in diversifying phenotypic effects (Sharov 2014). Additional mutations outwith these networks will add further phenotypic complexity, and in Wrinkly Spreaders isolated from aging or multiple-transfer populations such secondary mutations may ameliorate the antagonistic pleiotropic effects of the initial WS mutation, or add more elements to the developing WS phenotype.

A key insight we draw from this section is that small changes in initial conditions can have a big impact on subsequent population growth and diversification, and on the phenotype and success of any adaptive lineages that may appear. This is a central tenant of Chaos theory (the ‘butterfly’ effect), and has significance in natural and engineered microbial communities where the complexity of interactions will restrict the predictability of adaptive radiation.

Alternative routes to the colonisation of the A-L interface by biofilm-formation

Despite the competitive success of the Wrinkly Spreader in diversifying population of Pf. SBW25 in static microcosms, the intrinsic genome potential exploited by this class of adaptive mutants is not the only means by which the A-L interface can be colonised. Pf. SBW25 is known to produce at least five different biofilms which can be differentiated by mutation, biofilm matrix components and phenotype. These include the true Wrinkly Spreaders and the Viscous mass (VM) biofilm produced by wild-type
Pf. SBW25 when induced with FeCl$_3$ (Koza et al. 2009) which utilise cellulose as the primary biofilm matrix, WS-like mutants derived from cellulose-deficient (Δwss) strains including CBFS 2.1 (Gehrig, 2005) and the PWS mutants that use PGA instead (Lind et al. 2017), disrupted LPS–associated Fuzzy Spreaders (FS) (Ferguson et al. 2013), and matrix-independent cell–chaining (CC) phenotypes (Lind et al. 2017).

Comparison of WS, VM and CBFS 2.1 biofilms including quantitative measurements of biofilm strength, attachment levels, and rheology, plus measurements of competitive fitness including the ability to invade a larger population when numerically rare, clearly differentiate these structures and their ecological success in static microcosms, with the WS biofilm being the most robust and providing the greatest fitness benefit in pair-wise competitions (Koza 2011; Anna Koza and Andrew Spiers, unpublished observations). Similarly, fitness and invasion assays have been used to differentiate WS, FS, PWS and CC mutants (Rainey and Travisano 1998; Ferguson et al. 2013; Lind et al. 2017).

These different routes to the colonisation of the A-L interface by Pf. SBW25 is an example of evolutionary convergence and underscores the strong selection in static microcosms for access to O$_2$. Significantly, mutation of three key DGCs or associated regulators result in the expression of cellulose or PGA through the disruption of c-di-GMP homeostasis, and if these genes are deleted, there are a further thirteen mutational pathways that will still activate the WS or WS-like phenotype (Bantinaki et al. 2007; McDonald et al. 2009; McDonald et al. 2011; Lind et al. 2015; Lind et al. 2017). It would appear that the pleiotropic effects associated with mutations altering c-di-GMP homeostasis and the expression of cellulose and PGA collectively determine the fitness cost to biofilm–formation, whereas the growth advantage offered by access to higher O$_2$ levels provides the fitness benefit in colonising the A-L interface in static microcosms (MacLean et al. 2004; Koza 2011; Lind et al. 2017).

A key insight we draw from this section is that where there is sufficiently strong selection, multiple mutational pathways may be used to activate unexpressed or otherwise–repressed genome potential in order to allow bacteria to exploit new ecological opportunities with subtly differing phenotypes determined by pleiotropic effects. This has significance in pathogenicity, as isolates producing similar symptoms may have significantly different responses to pharmaceutical treatments such as antibiotics.

Concluding comment

The use of simple experimental microcosms to investigate adaptive radiation and the ecological success associated with complex phenotypes is often regarded by microbiologists as having little
relevance to the colonisation of natural environments by bacteria and the functioning of the
communities they establish, or indeed, of the value of such approaches to assess the evolutionary or
ecological significance of particular pathways of interest. However, we believe that the key insights
we have drawn from this model system have relevance in a range of areas, including pathogenicity,
especially in the treatment of chronic infections and long-term gastro-intestinal disorders where both
pathogen populations and host communities will change over time and with medical intervention, and
in natural and engineered communities such as those used for biocontrol, bioremediation, and
biotechnology processes to convert biomass, produce chemicals or energy, where communities and
key members will also change in response to environmental conditions. In each of these, bacteria
should be seen as being enormously adaptable and able to rapidly access intrinsic genome potential
through simple mutations. As populations grow, they will modify ecosystems, diversify and adapt,
and this will drive ecological succession and change community functions in a manner not predictable
if bacteria are considered to be cellular automatons with limited and unchanging response to abiotic
and biotic factors.

Acknowledgements

We acknowledge the involvement of Airat Kayumov (Kazan Federal University, Russia) and Svitlana
Rymar (Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine,
Ukraine) who worked with Olena Moshynets in the identification of PFLU4612 which we cited as
unpublished observations in this review. We thank the ERASMUS and IAESTE Student Exchange
Programmes, Royal Society of Edinburgh, Abertay University Graduate School and Abertay
University for their support of Anna Koza, Anna Kuśmierska and Kimberley McLaughlin, and our
continued research collaborations. Andrew Spiers is also member of the Scottish Alliance for
Geoscience Environment and Society (SAGES), and Anna Koza was a SAGES-associated PhD
student.

References

Andersson DI, Jerlström-Hultqvist J, Näsvall J. Evolution of new functions de novo and from pre-

Armitage DW. Experimental evidence for a time-integrated effect of productivity on diversity.

Kuśmierska A, Spiers AJ. New insights into the effects of several environmental parameters on the relative fitness of a numerically dominant class of evolved niche specialist. *Int J Evolutionary Biol* 2016; Article ID 4846565.

Lind PA, Farr AD, Rainey PB. Evolutionary convergence in experimental *Pseudomonas* populations. *ISME J* 2017;11:589–600

Spiers AJ. A mechanistic explanation linking adaptive mutation, niche change and fitness advantage for the Wrinkly Spreader. *Int J Evolutionary Biol* 2014; Article ID 675432.

West AH, Martinez-Hackert E, Stock AM. Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB. *J Mol Biol* 1995;**250**:276–90.

Figures, figure legends and Table 1 are included in separate files.

Figure 1. The adaptive Wrinkly Spreader genotype.

Figure 2. Wrinkly Spreader isolates show considerable variation in wrinkleality.
Figure 3. Elements of adaptive radiation in static microcosms.

Table 1. Challenges and opportunities for adaptive radiation of *Pf.* SBW25 in static microcosms and the colonisation of the A-L interface by biofilm–formation.
Figure legends

Figure 1. **The adaptive Wrinkly Spreader genotype.** When incubated in static microcosms, wild-type *Pf. SBW25* grows throughout the liquid column (left microcosm) and produces rounded and smooth colonies on agar plates. In contrast, the Wrinkly Spreader colonises the A-L interface by forming a robust biofilm demonstrating a change in niche preference (right microcosm) and produces wrinkled colonies. Image : A. Spiers.

Figure 2. **Wrinkly Spreader isolates show considerable variation in wrinkleality.** The combined biofilm assay can be used to determine quantitative differences in WS phenotypes, collectively known as wrinkleality. Shown here are the mean ± standard errors (ovals) for biofilm strength (grams / OD$_{600}$) versus attachment levels (A$_{570}$ / OD$_{600}$) for 12 independently-isolated Wrinkly Spreaders recovered from static microcosms (data are adjusted for growth using OD$_{600}$ measurements). There are significant differences in strength ($p = 0.01$) and attachment ($p < 0.01$) as determined by ANOVA. However, growth and attachment do not have a significant effect on biofilm strength ($p > 0.05$) when modelled using a GLM approach and are not sufficient to predict the robustness of WS biofilms. Raw data were from Udall *et al.* (2015); microcosm growth is determined by optical density measurements after vigorous mixing (OD$_{600}$), biofilm strength is determined using small glass balls (grams), and attachment levels determined using Crystal violet staining and absorbance measurements (A$_{570}$); see this reference for further details.

Figure 3. **Elements of adaptive radiation in static microcosms.** Random mutations activate intrinsic genome potential to produce key innovations. (A) The *Pf. SBW25* genome encodes the seven-gene chemosensory signal transduction-like Wsp system and the ten-gene Wss cellulose synthase operon (*wspF* is indicated by the black rectangle). (B) The Wsp complex (grey oval) is inactive when *Pf. SBW25* is growing in static microcosms, but mutations disrupting the regulatory role of the WspF subunit (black circle) in many Wrinkly Spreader isolates results in the production of c-di-GMP (double hexagons) by the DGC WspR (grey circle). Increased levels of c-di-GMP then induce the cellulose synthase complex (large grey circle) to express cellulose (black wiggly line) and attachment factor (not shown) required for the WS biofilm or key innovation. (C) The early colonists of static microcosms are ecosystem engineers and initially experience an unstructured environment (i) with uniform O$_2$ levels down the liquid column (indicated by the vertical dashed line). However, their metabolic activity establishes an increasingly acute O$_2$ gradient (dashed then solid black lines) which stratifies the liquid column into a
high-O$_2$ zone (ii) and an O$_2$-depleted region underneath (iii). (D) The diversifying population drives parapatric niche divergence in static microcosms to create new niches and support adaptive lineages. The initial niche (white circle) is transformed into a high-O$_2$ niche (grey bulge) colonised by the first biofilm–forming Wrinkly Spreaders (i) and an O$_2$-depleted niche that continues to support the ancestral genotype. As the WS biofilm matures, the O$_2$-depleted niche is further degraded, whilst additional niches (black bulge) may develop within biofilm structure to support new genotypes (ii). As these niches are not separated physically, genotypes can migrate from one to another, though as bacteria are non-sexual (and in this case not able to support horizontal gene transfer), hybridisation does not occur. (E) The diversification of the population established by the colonists (black dot at the start of the time-line going from the left to right) can also be mapped onto the creation and divergence of niches. A critical mutation (white dot) generates the first Wrinkly Spreader lineage able to colonise the high-O$_2$ niche (indicated here as crossing the dashed line and corresponding to D (i) above). Further diversification of the Wrinkly Spreaders (or other genotypes) leads to new adaptive genotypes able to colonise additional niches developing within the biofilm structure (indicated as crossing the dotted line and corresponding to D (ii) above).
Table 1. Challenges and opportunities for adaptive radiation of *Pf.* SBW25 in static microcosms and the colonisation of the A-L interface by biofilm–formation.

<table>
<thead>
<tr>
<th>Initial conditions</th>
<th>Evolvability of the ancestor: Pf. SBW25 has intrinsic genome potential: a complex c-di-GMP regulatory system with multiple DGCs linked to the expression of EPS that can be used as biofilm matrix components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting factors in the environment: O₂ is the primary resource restricting growth rate and final population sizes in static microcosms. Cells are subject to constant movement by random diffusion and micro-currents within the liquid column and microcosms are subject to random physical disturbance (sufficient to dislodge and sink biofilms).</td>
<td></td>
</tr>
<tr>
<td>Potential for adaptation: Overcoming limiting factors to achieve faster growth rates and higher final population sizes.</td>
<td></td>
</tr>
<tr>
<td>Ecological opportunity</td>
<td>Ecosystem engineering: Colonists change the initial environment by establishing an O₂ gradient in which flux through the A-L interface is balanced by uptake by individuals in the liquid column. This creates a high-O₂ niche space at the top of the liquid column available for colonisation.</td>
</tr>
<tr>
<td>Parapatric niche divergence: Conditions in both niches develop as the biofilm matures and populations continue to diversify. O₂ will be further depleted in the liquid column whilst the O₂-rich region at the top will become shallower as the biofilm matures. The developing biofilm will provide physical structure and increased metabolic activity which may influence cell distributions, nutrient and waste diffusion.</td>
<td></td>
</tr>
<tr>
<td>Fitness concerns</td>
<td>Physical structure: The biofilm secures access to high-O₂ levels by retaining cells at the A-L advantage interface in a cost-effective manner. If costs increase, WS fitness will be reduced.</td>
</tr>
<tr>
<td>Competitors: Establishment of the biofilm reduces O₂ available to competitors lower down in the liquid column, restricting growth rate and final population sizes. WS fitness is initially high when competition is largely between Wrinkly Spreaders and non-biofilm–forming genotypes, but decreases as Wrinkly Spreaders begin to dominate numerically.</td>
<td></td>
</tr>
<tr>
<td>Future developments</td>
<td>Increased systems complexity: Wrinkly Spreader competition within the biofilm, continued population diversification and complexity niche divergence, will add multiple niches defined by physical space and metabolic opportunities.</td>
</tr>
<tr>
<td>System collapse: Random physical disturbance generally causes biofilms to sink within 5 – 7 days, and although biofilm-formation may be re-initiated, physical disturbance and nutrient levels will ultimately determine system productivity.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

Attachment (A_{570} / OD_{600}) vs. Strength (grams / OD$_{600}$)
(A) Genome potential

\[wsp \quad \begin{array}{c}
\quad \quad \\
\end{array} \\
\]

\[wss \quad \begin{array}{c}
\quad \quad \\
\end{array} \]

(B) C-di-GMP induction

(C) Ecosystem engineering

(D) Parapatric niche divergence

(E) Genotype divergence